{"title":"Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring","authors":"Zhaoyang Li , Yong Cui , Junwen Zhong","doi":"10.1016/j.bios.2021.113290","DOIUrl":null,"url":null,"abstract":"<div><p>Electromechanical biomonitoring is essential in human health evaluation, diseases prevention and life quality improvement. Nanogenerators (NGs) have demonstrated exceptional performances and versatility in self-powered flexible electronics including piezoelectric and electrostatic sensors. Combined with artificial intelligent (AI), five generation (5G) and internet-of-thing (IoT) technologies, the NGs-based flexible electronics are paving a new way for creating intelligent electromechanical biomonitoring systems which are also capable of analyzing, transmitting, and deciding. In this review, we cover the recent remarkable developments in monitoring electromechanical physiological signals using NGs-based flexible electronics. We begin by covering the fundamentals of NGs from the perspective of mechanisms, materials, device structures, and manufacturing methods. We then give an overview of NGs-based flexible electronics in various wearable and implantable sensing applications. Finally, the present limitations and future developing trends of this field are discussed and prospected.</p></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"186 ","pages":"Article 113290"},"PeriodicalIF":10.7000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bios.2021.113290","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566321003274","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 16
Abstract
Electromechanical biomonitoring is essential in human health evaluation, diseases prevention and life quality improvement. Nanogenerators (NGs) have demonstrated exceptional performances and versatility in self-powered flexible electronics including piezoelectric and electrostatic sensors. Combined with artificial intelligent (AI), five generation (5G) and internet-of-thing (IoT) technologies, the NGs-based flexible electronics are paving a new way for creating intelligent electromechanical biomonitoring systems which are also capable of analyzing, transmitting, and deciding. In this review, we cover the recent remarkable developments in monitoring electromechanical physiological signals using NGs-based flexible electronics. We begin by covering the fundamentals of NGs from the perspective of mechanisms, materials, device structures, and manufacturing methods. We then give an overview of NGs-based flexible electronics in various wearable and implantable sensing applications. Finally, the present limitations and future developing trends of this field are discussed and prospected.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.