{"title":"Electron and hydrogen atom donor photocatalysts in situ generated from benzimidazolium salts and hydride reagents","authors":"Ryo Miyajima , Takehiro Kiuchi , Yuki Ooe , Hajime Iwamoto , Shin-ya Takizawa , Eietsu Hasegawa","doi":"10.1016/j.jpap.2023.100195","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic systems consisting of 2-substituted benzimidazoliums (BI<sup>+</sup>–R, R = polycyclic aryl, triarylamine or phenyl-sulfate) and stoichiometric hydride donor reagents were developed. Light emitting diode irradiation of these photocatalysts in the presence of NaBH<sub>4</sub> or picoline borane promotes desulfonylation reactions of an <em>N</em>-sulfonyl indole, <em>N</em>-sulfonyl amide and α-sulfonyl ketone. Absorption spectroscopic and redox potential measurements as well as density functional theory calculations were carried out to gain mechanistic information. Benzimidazolines (BIH–R), generated in situ by hydride reduction of BI<sup>+</sup>–R, serve as both an electron and hydrogen atom donor photocatalysts in these reductive desulfonylation reactions, which contrasts to ordinary reducing photocatalysts that simply donate electrons.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"16 ","pages":"Article 100195"},"PeriodicalIF":3.2610,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469023000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic systems consisting of 2-substituted benzimidazoliums (BI+–R, R = polycyclic aryl, triarylamine or phenyl-sulfate) and stoichiometric hydride donor reagents were developed. Light emitting diode irradiation of these photocatalysts in the presence of NaBH4 or picoline borane promotes desulfonylation reactions of an N-sulfonyl indole, N-sulfonyl amide and α-sulfonyl ketone. Absorption spectroscopic and redox potential measurements as well as density functional theory calculations were carried out to gain mechanistic information. Benzimidazolines (BIH–R), generated in situ by hydride reduction of BI+–R, serve as both an electron and hydrogen atom donor photocatalysts in these reductive desulfonylation reactions, which contrasts to ordinary reducing photocatalysts that simply donate electrons.