{"title":"Lipid metabolism and nutrigenomics - impact of sesame lignans on gene expression profiles and fatty acid oxidation in rat liver.","authors":"Takashi Ide, Yasutaka Nakashima, Hiroshi Iida, Satoko Yasumoto, Masumi Katsuta","doi":"10.1159/000212735","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of sesamin, episesamin and sesamolin (sesame lignans) on hepatic gene expression profiles was compared with a DNA microarray. Male Sprague-Dawley rats were fed experimental diets containing 0.2% sesamin, episesamin or sesamolin, and a control diet free of lignans for 15 days. Compared to a lignan-free diet, a diet containing sesamin, episesamin and sesamolin caused more than 1.5- and 2-fold changes in the expression of 128 and 40, 526 and 152, and 516 and 140 genes, respectively. The lignans modified the mRNA levels of not only many enzymes involved in hepatic fatty acid oxidation, but also proteins involved in the transportation of fatty acids into hepatocytes and their organelles, and in the regulation of hepatic concentrations of carnitine, CoA and malonyl-CoA. It is apparent that sesame lignans stimulate hepatic fatty acid oxidation by affecting the gene expression of various proteins regulating hepatic fatty acid metabolism. The changes in the gene expression were generally greater with episesamin and sesamolin than with sesamin. In terms of amounts accumulated in serum and the liver, the lignans ranked in the order sesamolin, episesamin and sesamin. The differences in bioavailability among these lignans appear to be important to their divergent physiological activities. We also confirmed that dietary sesame seed affected the expression of genes related to fatty acid oxidation in a manner similar to isolated lignan compounds.</p>","PeriodicalId":55148,"journal":{"name":"Forum of Nutrition","volume":"61 ","pages":"10-24"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000212735","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000212735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/4/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
The impact of sesamin, episesamin and sesamolin (sesame lignans) on hepatic gene expression profiles was compared with a DNA microarray. Male Sprague-Dawley rats were fed experimental diets containing 0.2% sesamin, episesamin or sesamolin, and a control diet free of lignans for 15 days. Compared to a lignan-free diet, a diet containing sesamin, episesamin and sesamolin caused more than 1.5- and 2-fold changes in the expression of 128 and 40, 526 and 152, and 516 and 140 genes, respectively. The lignans modified the mRNA levels of not only many enzymes involved in hepatic fatty acid oxidation, but also proteins involved in the transportation of fatty acids into hepatocytes and their organelles, and in the regulation of hepatic concentrations of carnitine, CoA and malonyl-CoA. It is apparent that sesame lignans stimulate hepatic fatty acid oxidation by affecting the gene expression of various proteins regulating hepatic fatty acid metabolism. The changes in the gene expression were generally greater with episesamin and sesamolin than with sesamin. In terms of amounts accumulated in serum and the liver, the lignans ranked in the order sesamolin, episesamin and sesamin. The differences in bioavailability among these lignans appear to be important to their divergent physiological activities. We also confirmed that dietary sesame seed affected the expression of genes related to fatty acid oxidation in a manner similar to isolated lignan compounds.