siRNA-mediated integrin-linked kinase suppression: nonspecific effects of siRNA/cationic liposome complexes trigger changes in the expression of phosphorylated-AKT and mTOR independently of ILK silencing.

Maite Verreault, Marcel B Bally
{"title":"siRNA-mediated integrin-linked kinase suppression: nonspecific effects of siRNA/cationic liposome complexes trigger changes in the expression of phosphorylated-AKT and mTOR independently of ILK silencing.","authors":"Maite Verreault,&nbsp;Marcel B Bally","doi":"10.1089/oli.2008.0157","DOIUrl":null,"url":null,"abstract":"<p><p>Short interfering RNA targeting ILK (ILK siRNA) could be used to treat patients with cancers where constitutive activation of the AKT/PI3K pathway is prominent (e.g., those cancers lack functional PTEN). It is generally believed that siRNA therapeutics will require the use of delivery systems and lipid-based formulations containing cationic lipids (CLs) are a viable option. However, CLs are known to be toxic and exposure to CLs can influence cell survival pathways. This study characterized how CLs combine with ILK siRNA to influence the AKT/PI3K pathway. Using PTEN-negative cell lines (PC3 castration-insensitive prostate cancer cells and U251 glioma cancer cells), the influence of CLs on the downstream consequences of ILK silencing was determined. When comparing nucleofection (an electroporation method that does not require the use of CLs) and CLs as means to deliver ILK siRNA, a 12- to 30-fold increase in siRNA delivery was achieved when using a CL formulation, yet ILK suppression was less efficient. Importantly, time-dependent signaling consequences associated with ILK silencing, including suppression of phosphorylated (serine 473)-AKT and changes in mTOR expression, were observed independently of ILK suppression when the target cells were exposed to cationic lipids following nucleofection-based delivery of ILK siRNA.</p>","PeriodicalId":19523,"journal":{"name":"Oligonucleotides","volume":"19 2","pages":"129-40"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/oli.2008.0157","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oligonucleotides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/oli.2008.0157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Short interfering RNA targeting ILK (ILK siRNA) could be used to treat patients with cancers where constitutive activation of the AKT/PI3K pathway is prominent (e.g., those cancers lack functional PTEN). It is generally believed that siRNA therapeutics will require the use of delivery systems and lipid-based formulations containing cationic lipids (CLs) are a viable option. However, CLs are known to be toxic and exposure to CLs can influence cell survival pathways. This study characterized how CLs combine with ILK siRNA to influence the AKT/PI3K pathway. Using PTEN-negative cell lines (PC3 castration-insensitive prostate cancer cells and U251 glioma cancer cells), the influence of CLs on the downstream consequences of ILK silencing was determined. When comparing nucleofection (an electroporation method that does not require the use of CLs) and CLs as means to deliver ILK siRNA, a 12- to 30-fold increase in siRNA delivery was achieved when using a CL formulation, yet ILK suppression was less efficient. Importantly, time-dependent signaling consequences associated with ILK silencing, including suppression of phosphorylated (serine 473)-AKT and changes in mTOR expression, were observed independently of ILK suppression when the target cells were exposed to cationic lipids following nucleofection-based delivery of ILK siRNA.

siRNA介导的整合素连接激酶抑制:siRNA/阳离子脂质体复合物的非特异性作用触发磷酸化akt和mTOR的表达变化,独立于ILK沉默。
靶向ILK的短干扰RNA (ILK siRNA)可用于治疗AKT/PI3K通路组成性激活突出的癌症患者(例如,那些癌症缺乏功能性PTEN)。人们普遍认为,siRNA疗法将需要使用递送系统,而含有阳离子脂质(CLs)的脂质制剂是一种可行的选择。然而,已知CLs是有毒的,暴露于CLs会影响细胞存活途径。本研究描述了CLs如何与ILK siRNA结合影响AKT/PI3K通路。使用pten阴性细胞系(PC3去势不敏感前列腺癌细胞和U251胶质瘤癌细胞),确定CLs对ILK沉默的下游后果的影响。当比较核转染(一种不需要使用CLs的电穿孔方法)和CLs作为递送ILK siRNA的手段时,使用CL制剂时siRNA递送量增加了12至30倍,但ILK抑制效率较低。重要的是,当靶细胞暴露于基于细胞核的ILK siRNA递送后的阳离子脂质中时,与ILK沉默相关的时间依赖性信号传导后果,包括磷酸化(丝氨酸473)-AKT的抑制和mTOR表达的变化,独立于ILK抑制被观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oligonucleotides
Oligonucleotides 生物-生化与分子生物学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信