{"title":"Phylogenetic analysis of heavy-metal ATPases in fungi and characterization of the copper-transporting ATPase of Cochliobolus heterostrophus","authors":"Yoshimoto Saitoh, Kosuke Izumitsu, Chihiro Tanaka","doi":"10.1016/j.mycres.2009.02.009","DOIUrl":null,"url":null,"abstract":"<div><p>We performed a phylogenetic analysis of heavy-metal ATPases (HMAs) in fungi and found that HMAs can be divided into three groups, A, B, and C. Group A is predicted to deliver copper ions to copper-containing proteins, while Groups B and C are thought to function as cell-membrane copper-efflux pumps. Furthermore, Groups B and C consist of fungal-specific HMAs, while Group A consists of fungal orthologues that have been well conserved in eukaryotes. We also cloned and characterized a Group A-type HMA gene (<em>i.e.</em>, <em>ChCcc2</em>) of the filamentous plant pathogen, <em>Cochliobolus heterostrophus</em>. Mutation of <em>ChCcc2</em> severely affected growth, pigmentation, conidiation, and colonial morphology. Activity of the copper-containing protein, laccase, was also lost in <em>ChCcc2</em> mutants, suggesting that ChCCC2 plays an important role in growth and morphology by activating various copper-containing proteins in <em>C. heterostrophus</em>.</p></div>","PeriodicalId":19045,"journal":{"name":"Mycological research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mycres.2009.02.009","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycological research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0953756209000513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We performed a phylogenetic analysis of heavy-metal ATPases (HMAs) in fungi and found that HMAs can be divided into three groups, A, B, and C. Group A is predicted to deliver copper ions to copper-containing proteins, while Groups B and C are thought to function as cell-membrane copper-efflux pumps. Furthermore, Groups B and C consist of fungal-specific HMAs, while Group A consists of fungal orthologues that have been well conserved in eukaryotes. We also cloned and characterized a Group A-type HMA gene (i.e., ChCcc2) of the filamentous plant pathogen, Cochliobolus heterostrophus. Mutation of ChCcc2 severely affected growth, pigmentation, conidiation, and colonial morphology. Activity of the copper-containing protein, laccase, was also lost in ChCcc2 mutants, suggesting that ChCCC2 plays an important role in growth and morphology by activating various copper-containing proteins in C. heterostrophus.