Efficient degradation of perfluorooctanoic acid by electrospun lignin-based bimetallic MOFs nanofibers composite membranes with peroxymonosulfate under solar light irradiation
Chen Hou , Wenqiang Chen , Linhui Fu , Sufeng Zhang , Chen Liang , Yang Wang
{"title":"Efficient degradation of perfluorooctanoic acid by electrospun lignin-based bimetallic MOFs nanofibers composite membranes with peroxymonosulfate under solar light irradiation","authors":"Chen Hou , Wenqiang Chen , Linhui Fu , Sufeng Zhang , Chen Liang , Yang Wang","doi":"10.1016/j.ijbiomac.2021.01.184","DOIUrl":null,"url":null,"abstract":"<div><p>Perfluorooctanoic acid (PFOA) has demonstrated potential toxicity to human health and has been detected in different environmental matrices due to its stable physical and chemical properties. To degrade PFOA under solar light irradiation, we fabricated a lignin/polyvinyl alcohol (PVA)/Co/Fe metal-organic frameworks (lignin/PVA/bi-MOFs) composite membrane via a typical electrospinning and in-situ solvothermal method for the catalytic degradation of PFOA. In the peroxymonosulfate (PMS)/membranes/solar light system, Electron paramagnetic resonance analysis (EPR) demonstrated the sulfate radicals (SO<sub>4</sub><img><sup>−</sup>) and hydroxyl radicals (OH<img>) were generated by activating PMS with transition metal and solar light irradiation. Lignin/PVA/bi-MOFs showed outstanding performance in that 89.6% of PFOA was degraded within 3 h under optimal conditions. Compared with that in solar light, only 59.6% PFOA was degraded in the dark, and the rate constant of PFOA degradation decreased from 0.0150 min<sup>−1</sup> to 0.0046 min<sup>−1</sup>. Moreover, lignin/PVA/bi-MOFs were reused after simply rinsing with ultra-pure water and the degradation capacity of lignin/PVA/bi-MOFs remained at 77% after 4 cycles. The results might provide a new concept for the design of bimetallic MOFs for applications in organic pollutant removal.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijbiomac.2021.01.184","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813021002324","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 23
Abstract
Perfluorooctanoic acid (PFOA) has demonstrated potential toxicity to human health and has been detected in different environmental matrices due to its stable physical and chemical properties. To degrade PFOA under solar light irradiation, we fabricated a lignin/polyvinyl alcohol (PVA)/Co/Fe metal-organic frameworks (lignin/PVA/bi-MOFs) composite membrane via a typical electrospinning and in-situ solvothermal method for the catalytic degradation of PFOA. In the peroxymonosulfate (PMS)/membranes/solar light system, Electron paramagnetic resonance analysis (EPR) demonstrated the sulfate radicals (SO4−) and hydroxyl radicals (OH) were generated by activating PMS with transition metal and solar light irradiation. Lignin/PVA/bi-MOFs showed outstanding performance in that 89.6% of PFOA was degraded within 3 h under optimal conditions. Compared with that in solar light, only 59.6% PFOA was degraded in the dark, and the rate constant of PFOA degradation decreased from 0.0150 min−1 to 0.0046 min−1. Moreover, lignin/PVA/bi-MOFs were reused after simply rinsing with ultra-pure water and the degradation capacity of lignin/PVA/bi-MOFs remained at 77% after 4 cycles. The results might provide a new concept for the design of bimetallic MOFs for applications in organic pollutant removal.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.