Genetically encoded fluorescent sensors of membrane potential.

Brain cell biology Pub Date : 2008-08-01 Epub Date: 2008-08-05 DOI:10.1007/s11068-008-9026-7
B J Baker, H Mutoh, D Dimitrov, W Akemann, A Perron, Y Iwamoto, L Jin, L B Cohen, E Y Isacoff, V A Pieribone, T Hughes, T Knöpfel
{"title":"Genetically encoded fluorescent sensors of membrane potential.","authors":"B J Baker, H Mutoh, D Dimitrov, W Akemann, A Perron, Y Iwamoto, L Jin, L B Cohen, E Y Isacoff, V A Pieribone, T Hughes, T Knöpfel","doi":"10.1007/s11068-008-9026-7","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging activity of neurons in intact brain tissue was conceived several decades ago and, after many years of development, voltage-sensitive dyes now offer the highest spatial and temporal resolution for imaging neuronal functions in the living brain. Further progress in this field is expected from the emergent development of genetically encoded fluorescent sensors of membrane potential. These fluorescent protein (FP) voltage sensors overcome the drawbacks of organic voltage sensitive dyes such as non-specificity of cell staining and the low accessibility of the dye to some cell types. In a transgenic animal, a genetically encoded sensor could in principle be expressed specifically in any cell type and would have the advantage of staining only the cell population determined by the specificity of the promoter used to drive expression. Here we critically review the current status of these developments.</p>","PeriodicalId":72445,"journal":{"name":"Brain cell biology","volume":" ","pages":"53-67"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775812/pdf/nihms-140811.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11068-008-9026-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/8/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Imaging activity of neurons in intact brain tissue was conceived several decades ago and, after many years of development, voltage-sensitive dyes now offer the highest spatial and temporal resolution for imaging neuronal functions in the living brain. Further progress in this field is expected from the emergent development of genetically encoded fluorescent sensors of membrane potential. These fluorescent protein (FP) voltage sensors overcome the drawbacks of organic voltage sensitive dyes such as non-specificity of cell staining and the low accessibility of the dye to some cell types. In a transgenic animal, a genetically encoded sensor could in principle be expressed specifically in any cell type and would have the advantage of staining only the cell population determined by the specificity of the promoter used to drive expression. Here we critically review the current status of these developments.

基因编码的膜电位荧光传感器。
几十年前,人们就开始设想对完整脑组织中神经元的活动进行成像,经过多年的发展,电压敏感染料现在已能提供最高的空间和时间分辨率,对活体大脑中的神经元功能进行成像。膜电位基因编码荧光传感器的出现有望在这一领域取得进一步进展。这些荧光蛋白(FP)电压传感器克服了有机电压敏感染料的缺点,如细胞染色的非特异性和染料对某些类型细胞的低可及性。在转基因动物中,基因编码的传感器原则上可以在任何细胞类型中特异表达,其优点是只对用于驱动表达的启动子特异性所决定的细胞群进行染色。在此,我们对这些发展的现状进行了认真的回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信