{"title":"Cell-type specific occurrence of apoptosis in taste buds of the rat circumvallate papilla.","authors":"Katsura Ueda, Yasuo Ichimori, Hitomi Maruyama, Yayoi Murakami, Masae Fujii, Shiho Honma, Satoshi Wakisaka","doi":"10.1679/aohc.71.59","DOIUrl":null,"url":null,"abstract":"<p><p>The present study employed immunohistochemistry for single-stranded DNA (ssDNA) to detect apoptotic cells in taste buds of the rat circumvallate papilla. Double-labeling of ssDNA and markers for each cell type - phospholipase C beta2 (PLCbeta2) and alpha-gustducin for type II cells, neural cell adhesion molecule (NCAM) for type III cells, and Jacalin for type IV cells - was also performed to reveal which types of cells die by apoptosis. We detected approximately 16.8% and 14.0% of ssDNA-immunoreactive nuclei among PLCbeta2-immunoreactive and alpha-gustducinimmunoreactive cells, respectively, but rarely found ssDNA-immunoreactive cells among NCAM-immunoreactive or Jacalin-labeled cells, indicating that type II cells die by apoptosis. We also applied double labeling of ssDNA and human blood group antigen H (AbH) - which mostly labels type I cells as well as other cell types - and found that approximately 78% of ssDNA-immunoreactive cells were labeled with AbH, indicating that apoptosis also occurs in type I cells. The present results revealed that apoptosis occurs in both type I cells (dark cells) and type II cells (light cells), suggesting that there are two major cell lineages (dark cell and light cell lineages) for the differentiation of taste bud cells. In summury, type IV cells differentiate into dark and light cells and type III cells differentiate to type II cells within the light cell line.</p>","PeriodicalId":8307,"journal":{"name":"Archives of histology and cytology","volume":"71 1","pages":"59-67"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1679/aohc.71.59","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of histology and cytology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1679/aohc.71.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 16
Abstract
The present study employed immunohistochemistry for single-stranded DNA (ssDNA) to detect apoptotic cells in taste buds of the rat circumvallate papilla. Double-labeling of ssDNA and markers for each cell type - phospholipase C beta2 (PLCbeta2) and alpha-gustducin for type II cells, neural cell adhesion molecule (NCAM) for type III cells, and Jacalin for type IV cells - was also performed to reveal which types of cells die by apoptosis. We detected approximately 16.8% and 14.0% of ssDNA-immunoreactive nuclei among PLCbeta2-immunoreactive and alpha-gustducinimmunoreactive cells, respectively, but rarely found ssDNA-immunoreactive cells among NCAM-immunoreactive or Jacalin-labeled cells, indicating that type II cells die by apoptosis. We also applied double labeling of ssDNA and human blood group antigen H (AbH) - which mostly labels type I cells as well as other cell types - and found that approximately 78% of ssDNA-immunoreactive cells were labeled with AbH, indicating that apoptosis also occurs in type I cells. The present results revealed that apoptosis occurs in both type I cells (dark cells) and type II cells (light cells), suggesting that there are two major cell lineages (dark cell and light cell lineages) for the differentiation of taste bud cells. In summury, type IV cells differentiate into dark and light cells and type III cells differentiate to type II cells within the light cell line.
期刊介绍:
The Archives of Histology and Cytology provides prompt publication in English of original works on the histology and histochemistry of man and animals. The articles published are in principle restricted to studies on vertebrates, but investigations using invertebrates may be accepted when the intention and results present issues of common interest to vertebrate researchers. Pathological studies may also be accepted, if the observations and interpretations are deemed to contribute toward increasing knowledge of the normal features of the cells or tissues concerned. This journal will also publish reviews offering evaluations and critical interpretations of recent studies and theories.