Lan Chen, Yang Yang, Jun Han, Bao-Yun Zhang, Lin Zhao, Kai Nie, Xiao-Fan Wang, Feng Li, Chen Gao, Xiao-Ping Dong, Cai-Min Xu
{"title":"Removal of the glycosylation of prion protein provokes apoptosis in SF126.","authors":"Lan Chen, Yang Yang, Jun Han, Bao-Yun Zhang, Lin Zhao, Kai Nie, Xiao-Fan Wang, Feng Li, Chen Gao, Xiao-Ping Dong, Cai-Min Xu","doi":"10.5483/bmbrep.2007.40.5.662","DOIUrl":null,"url":null,"abstract":"<p><p>Although the function of cellular prion protein (PrPc) and the pathogenesis of prion diseases have been widely described, the mechanisms are not fully clarified. In this study, increases of the portion of non-glycosylated prion protein deposited in the hamster brains infected with scrapie strain 263K were described. To elucidate the pathological role of glycosylation profile of PrP, wild type human PrP (HuPrP) and two genetic engineering generated non-glycosylated PrP mutants (N181Q/N197Q and T183A/T199A) were transiently expressed in human astrocytoma cell line SF126. The results revealed that expressions of non-glycosylated PrP induced significantly more apoptosis cells than that of wild type PrP. It illustrated that Bcl-2 proteins might be involved in the apoptosis pathway of non-glycosylated PrPs. Our data highlights that removal of glycosylation of prion protein provokes cells apoptosis.</p>","PeriodicalId":15113,"journal":{"name":"Journal of biochemistry and molecular biology","volume":"40 5","pages":"662-9"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5483/bmbrep.2007.40.5.662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Although the function of cellular prion protein (PrPc) and the pathogenesis of prion diseases have been widely described, the mechanisms are not fully clarified. In this study, increases of the portion of non-glycosylated prion protein deposited in the hamster brains infected with scrapie strain 263K were described. To elucidate the pathological role of glycosylation profile of PrP, wild type human PrP (HuPrP) and two genetic engineering generated non-glycosylated PrP mutants (N181Q/N197Q and T183A/T199A) were transiently expressed in human astrocytoma cell line SF126. The results revealed that expressions of non-glycosylated PrP induced significantly more apoptosis cells than that of wild type PrP. It illustrated that Bcl-2 proteins might be involved in the apoptosis pathway of non-glycosylated PrPs. Our data highlights that removal of glycosylation of prion protein provokes cells apoptosis.