F. Cappuzzello , H. Lenske , M. Cavallaro , C. Agodi , N. Auerbach , J.I. Bellone , R. Bijker , S. Burrello , S. Calabrese , D. Carbone , M. Colonna , G. De Gregorio , J.L. Ferreira , D. Gambacurta , H. García-Tecocoatzi , A. Gargano , J.A. Lay , R. Linares , J. Lubian , E. Santopinto , A. Spatafora
{"title":"Shedding light on nuclear aspects of neutrinoless double beta decay by heavy-ion double charge exchange reactions","authors":"F. Cappuzzello , H. Lenske , M. Cavallaro , C. Agodi , N. Auerbach , J.I. Bellone , R. Bijker , S. Burrello , S. Calabrese , D. Carbone , M. Colonna , G. De Gregorio , J.L. Ferreira , D. Gambacurta , H. García-Tecocoatzi , A. Gargano , J.A. Lay , R. Linares , J. Lubian , E. Santopinto , A. Spatafora","doi":"10.1016/j.ppnp.2022.103999","DOIUrl":null,"url":null,"abstract":"<div><p>We review the status and prospects of heavy-ion double charge exchange (HI-DCE) reactions. Their important role for nuclear reaction, nuclear structure and double beta-decay investigations is outlined. From the experimental side the characteristically tiny cross sections for these processes and the high background generated by other more probable competing reactions is the main challenge, which has hindered HI-DCE spectroscopy until recent years. Modern magnetic spectrometers have proven to possess the right requisites to overcome past limitations, fostering the present and future development of the field. From the theory side, the description of the measured HI-DCE cross sections poses manifold challenges. Dealing with processes which involve composite nuclei, HI-DCE reactions can, in principle, proceed through several alternative paths. These, in turn, correspond to different reaction mechanisms probing competing aspects of nuclear structure, from mean field to various classes of nucleon–nucleon interactions and correlations. A powerful way to scrutinize the nuclear response to HI-DCE is to consistently link it to the information extracted from the competing direct reactions. Indeed, these complementary studies are mandatory in order to minimize the systematic errors in the data analyses and build a many-facets and parameter-free representation of the systems under study.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"128 ","pages":"Article 103999"},"PeriodicalIF":14.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641022000576","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 14
Abstract
We review the status and prospects of heavy-ion double charge exchange (HI-DCE) reactions. Their important role for nuclear reaction, nuclear structure and double beta-decay investigations is outlined. From the experimental side the characteristically tiny cross sections for these processes and the high background generated by other more probable competing reactions is the main challenge, which has hindered HI-DCE spectroscopy until recent years. Modern magnetic spectrometers have proven to possess the right requisites to overcome past limitations, fostering the present and future development of the field. From the theory side, the description of the measured HI-DCE cross sections poses manifold challenges. Dealing with processes which involve composite nuclei, HI-DCE reactions can, in principle, proceed through several alternative paths. These, in turn, correspond to different reaction mechanisms probing competing aspects of nuclear structure, from mean field to various classes of nucleon–nucleon interactions and correlations. A powerful way to scrutinize the nuclear response to HI-DCE is to consistently link it to the information extracted from the competing direct reactions. Indeed, these complementary studies are mandatory in order to minimize the systematic errors in the data analyses and build a many-facets and parameter-free representation of the systems under study.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.