Wei-song Pan , Qi Zou , Min Hu , Wai-chin Li , Xiao-ran Xiong , Yan-ting Qi , Chuan Wu
{"title":"Microbial community composition and cooccurrence patterns driven by co-contamination of arsenic and antimony in antimony-mining area","authors":"Wei-song Pan , Qi Zou , Min Hu , Wai-chin Li , Xiao-ran Xiong , Yan-ting Qi , Chuan Wu","doi":"10.1016/j.jhazmat.2023.131535","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the current study, a typical Sb mine was selected to explore the microbial community<span> composition and assembly driven by the cocontamination of As/Sb with geographic distance. Our results showed that environmental parameters, especially pH, TOC, nitrate, total and bioavailable As/Sb contents largely affected the microbial community diversity and composition. The total and bioavailable As/Sb levels were significantly positively correlated with the relative abundance of </span></span><em>Zavarzinella</em>, <em>Thermosporothrix</em> and <em>Holophaga</em>, while the pH presented a significant negative correlation with the three genera, potentially implying they are important taxonomic groups in acid-mining soils. The cooccurrence network analysis indicated the environmental stress dominated by pH and As/Sb co-contamination affected the microbial modularity and interaction. Meanwhile, Homogeneous selection (HoS, 26.4–49.3%), and drift and others (DR, 27.1∼40.2%) were the most important assembly processes for soil bacterial, and the importance of HoS decreased and the DR increased with geographic distance to the contamination source respectively. Soil pH, nutrient availability, total and bioavailable As/Sb contents significantly affected the HoS and DR processes. This study provides theoretical support for microbial remediation in metal(loid)-contaminated soils.</p></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"454 ","pages":"Article 131535"},"PeriodicalIF":12.2000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030438942300818X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
In the current study, a typical Sb mine was selected to explore the microbial community composition and assembly driven by the cocontamination of As/Sb with geographic distance. Our results showed that environmental parameters, especially pH, TOC, nitrate, total and bioavailable As/Sb contents largely affected the microbial community diversity and composition. The total and bioavailable As/Sb levels were significantly positively correlated with the relative abundance of Zavarzinella, Thermosporothrix and Holophaga, while the pH presented a significant negative correlation with the three genera, potentially implying they are important taxonomic groups in acid-mining soils. The cooccurrence network analysis indicated the environmental stress dominated by pH and As/Sb co-contamination affected the microbial modularity and interaction. Meanwhile, Homogeneous selection (HoS, 26.4–49.3%), and drift and others (DR, 27.1∼40.2%) were the most important assembly processes for soil bacterial, and the importance of HoS decreased and the DR increased with geographic distance to the contamination source respectively. Soil pH, nutrient availability, total and bioavailable As/Sb contents significantly affected the HoS and DR processes. This study provides theoretical support for microbial remediation in metal(loid)-contaminated soils.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.