Purification, kinetic properties and physicochemical characterization of a novel acid phosphatase (AP) from germinating peanut (Arachis hypogaea) seed.
Jean Tia Gonnety, Sébastien Niamké, Betty Meuwiah Faulet, Eugène Jean-Parfait N'guessan Kouadio, Lucien Patrice Kouamé
{"title":"Purification, kinetic properties and physicochemical characterization of a novel acid phosphatase (AP) from germinating peanut (Arachis hypogaea) seed.","authors":"Jean Tia Gonnety, Sébastien Niamké, Betty Meuwiah Faulet, Eugène Jean-Parfait N'guessan Kouadio, Lucien Patrice Kouamé","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Acid phosphatase activity was detected in peanut (Arachis hypogaea) cotyledons during germination. Four (4) to six (6) days of germination was the meantime corresponding to maximum hydrolytic activity of this enzyme. The understanding of the role of acid phosphatase activity during germination led to purify this enzyme by successive chromatography separations on DEAE-Sepharose CL-6B, Sephacryl S-100 HR and Phenyl-Sepharose HP to apparent homogeneity from germinated peanut cotyledon five days old. This enzyme designated peanut cotyledon acid phosphatase (AP) had native molecular weight of 24 kDa by gel permeation. SDS-PAGE of the purified acid phosphatase resolved a single protein band that migrated to approximately 21.5 kDa. Thus, this acid phosphatase likely functions as a monomer. The enzyme had optimum pH (5.0) and temperature (55 degrees C), and appeared to be stable in the presence of anionic, cationic and non-ionic detergents. Substrate specificity indicated that the purified acid phosphatase hydrolyzed a broad range of phosphorylated substrates. However, natural substrates such as ADP and ATP were the compounds with highest rate of hydrolysis for the enzyme. Moreover, the purified acid phosphatase exhibited phytase activity. These results showed that this enzyme played a peculiar role during germination, notably in reducing the rate of phytic acid, an antinutritional substance contained in peanut seed.</p>","PeriodicalId":22527,"journal":{"name":"The Italian journal of biochemistry","volume":"56 2","pages":"149-57"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Italian journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Acid phosphatase activity was detected in peanut (Arachis hypogaea) cotyledons during germination. Four (4) to six (6) days of germination was the meantime corresponding to maximum hydrolytic activity of this enzyme. The understanding of the role of acid phosphatase activity during germination led to purify this enzyme by successive chromatography separations on DEAE-Sepharose CL-6B, Sephacryl S-100 HR and Phenyl-Sepharose HP to apparent homogeneity from germinated peanut cotyledon five days old. This enzyme designated peanut cotyledon acid phosphatase (AP) had native molecular weight of 24 kDa by gel permeation. SDS-PAGE of the purified acid phosphatase resolved a single protein band that migrated to approximately 21.5 kDa. Thus, this acid phosphatase likely functions as a monomer. The enzyme had optimum pH (5.0) and temperature (55 degrees C), and appeared to be stable in the presence of anionic, cationic and non-ionic detergents. Substrate specificity indicated that the purified acid phosphatase hydrolyzed a broad range of phosphorylated substrates. However, natural substrates such as ADP and ATP were the compounds with highest rate of hydrolysis for the enzyme. Moreover, the purified acid phosphatase exhibited phytase activity. These results showed that this enzyme played a peculiar role during germination, notably in reducing the rate of phytic acid, an antinutritional substance contained in peanut seed.