{"title":"Microstructured reactors for development and production in pharmaceutical and fine chemistry.","authors":"V Hessel, P Löb, U Krtschil, H Löwe","doi":"10.1007/2789_2007_035","DOIUrl":null,"url":null,"abstract":"<p><p>The true potential of microprocess technology for process intensification is not yet fully clear and needs to be actively explored, although more and more industrial case stories provide information. This paper uses a shortcut cost analysis to show the major cost portions for processes conducted by microstructured reactors. This leads to predicting novel chemical protocol conditions, which are tailored for microprocess technology and which are expected to highly intensify chemical processes. Some generic rules to approach this are termed new process windows, because they constitute a new approach to enabling chemistry. Using such process intensification together with scaled-out microstructured reactors, which is demonstrated by the example of gas-liquid microprocessing, paves the road to viable industrial microflow processes. Several such commercially oriented case studies are given. Without the use of new process windows conditions, microprocess technology will probably stick to niche applications.</p>","PeriodicalId":87471,"journal":{"name":"Ernst Schering Foundation symposium proceedings","volume":" 3","pages":"205-40"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/2789_2007_035","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Foundation symposium proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/2789_2007_035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The true potential of microprocess technology for process intensification is not yet fully clear and needs to be actively explored, although more and more industrial case stories provide information. This paper uses a shortcut cost analysis to show the major cost portions for processes conducted by microstructured reactors. This leads to predicting novel chemical protocol conditions, which are tailored for microprocess technology and which are expected to highly intensify chemical processes. Some generic rules to approach this are termed new process windows, because they constitute a new approach to enabling chemistry. Using such process intensification together with scaled-out microstructured reactors, which is demonstrated by the example of gas-liquid microprocessing, paves the road to viable industrial microflow processes. Several such commercially oriented case studies are given. Without the use of new process windows conditions, microprocess technology will probably stick to niche applications.