{"title":"Proteomic analyses to identify novel therapeutic targets for the treatment of advanced prostate cancer.","authors":"Barbara Comuzzi, Marianne D Sadar","doi":"10.1901/jaba.2006.3-61","DOIUrl":null,"url":null,"abstract":"<p><p>At present there is no cure for advanced prostate cancer once it progresses to an androgen independent stage. Hormonal therapy, radiotherapy, and chemotherapy all have limited durations of efficacy for men diagnosed with androgen independent disease and patients will succumb over a period of several months to two years. The androgen receptor (AR) has been suspected to play an important role in the mechanism of progression to androgen independence. This is because the AR is a transcription factor that 'normally' mediates the effects of androgen to regulate expression of genes involved in proliferation and survival of prostate cells. Thus identifying and characterizing the proteins that interact with the AR to facilitate an activated receptor is of critical importance. Proteomic approaches such as isotope-coded affinity tags (ICAT), isotope Tags for Relative and Absolute Quantification (iTRAQ)(TM), Stable Isotope Labeling with Amino acids in Cell culture (SILAC), Tandem Affinity Purification (TAP) of tagged proteins (TAP-tag) and Multidimensional Protein Identification Technology (MudPIT) provide large scale unbiased strategies and have not been previously applied to identify proteins that interact with the AR. Here an example of the power of these proteomic approaches to identify potential therapeutic targets for prostate cancer is provided. Application of MudPIT identified 82 peptides in endogenous complexes immunoprecipitated with the AR from prostate cancer cells. Identification of these novel proteins may ultimately lead to the development of better therapies for the treatment or prevention of advanced prostate cancer.</p>","PeriodicalId":87394,"journal":{"name":"Cellscience","volume":"3 1","pages":"61-81"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762136/pdf/nihms14713.pdf","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1901/jaba.2006.3-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
At present there is no cure for advanced prostate cancer once it progresses to an androgen independent stage. Hormonal therapy, radiotherapy, and chemotherapy all have limited durations of efficacy for men diagnosed with androgen independent disease and patients will succumb over a period of several months to two years. The androgen receptor (AR) has been suspected to play an important role in the mechanism of progression to androgen independence. This is because the AR is a transcription factor that 'normally' mediates the effects of androgen to regulate expression of genes involved in proliferation and survival of prostate cells. Thus identifying and characterizing the proteins that interact with the AR to facilitate an activated receptor is of critical importance. Proteomic approaches such as isotope-coded affinity tags (ICAT), isotope Tags for Relative and Absolute Quantification (iTRAQ)(TM), Stable Isotope Labeling with Amino acids in Cell culture (SILAC), Tandem Affinity Purification (TAP) of tagged proteins (TAP-tag) and Multidimensional Protein Identification Technology (MudPIT) provide large scale unbiased strategies and have not been previously applied to identify proteins that interact with the AR. Here an example of the power of these proteomic approaches to identify potential therapeutic targets for prostate cancer is provided. Application of MudPIT identified 82 peptides in endogenous complexes immunoprecipitated with the AR from prostate cancer cells. Identification of these novel proteins may ultimately lead to the development of better therapies for the treatment or prevention of advanced prostate cancer.