Mohamad Hamdi Zainal-Abidin , Maan Hayyan , Juan Matmin , Abdo Mohammed Al-Fakih , Naharullah Jamaluddin , Wan M. Asyraf Wan Mahmood , Roswanira Abdul Wahab , Faizuan Abdullah
{"title":"Greening industrial applications with magnetic-based deep eutectic solvents: A promising future","authors":"Mohamad Hamdi Zainal-Abidin , Maan Hayyan , Juan Matmin , Abdo Mohammed Al-Fakih , Naharullah Jamaluddin , Wan M. Asyraf Wan Mahmood , Roswanira Abdul Wahab , Faizuan Abdullah","doi":"10.1016/j.jiec.2023.04.011","DOIUrl":null,"url":null,"abstract":"<div><p>The field of green technology is evolving rapidly to address new industrial challenges, and deep eutectic solvents (DESs) have emerged as a potential alternative to traditional organic compounds and ionic liquids. Among their main classes, magnetic DESs (MagDESs) have gained significant attention due to their unique magnetic properties resulting from the presence of magnetic ions in the solvent. The unique magnetic properties of MagDESs, combined with their stability and compatibility, make them suitable for various applications, including magnetic separation and purification. The ease of separation of MagDESs from their respective mixtures via the application of an external magnetic field distinguishes them as a desirable solution, enabling quick extraction and easy collection without centrifugation. Moreover, DESs can serve to endow magnetic materials with new functionalities for a wide range of applications. Utilizing DESs enables the functionalization of magnetic materials without the use of volatile organic solvents or extended processing periods. MagDESs are expected to be used in the extraction of various compounds, but there are some limitations that must be considered, such as compatibility issues, recovery difficulty, and also long-term stability and sustainability of MagDESs in different environments and applications. Further research and development are necessary to fully understand and optimize the benefits and limitations of MagDESs.</p></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"124 ","pages":"Pages 1-16"},"PeriodicalIF":5.9000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X23002289","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
The field of green technology is evolving rapidly to address new industrial challenges, and deep eutectic solvents (DESs) have emerged as a potential alternative to traditional organic compounds and ionic liquids. Among their main classes, magnetic DESs (MagDESs) have gained significant attention due to their unique magnetic properties resulting from the presence of magnetic ions in the solvent. The unique magnetic properties of MagDESs, combined with their stability and compatibility, make them suitable for various applications, including magnetic separation and purification. The ease of separation of MagDESs from their respective mixtures via the application of an external magnetic field distinguishes them as a desirable solution, enabling quick extraction and easy collection without centrifugation. Moreover, DESs can serve to endow magnetic materials with new functionalities for a wide range of applications. Utilizing DESs enables the functionalization of magnetic materials without the use of volatile organic solvents or extended processing periods. MagDESs are expected to be used in the extraction of various compounds, but there are some limitations that must be considered, such as compatibility issues, recovery difficulty, and also long-term stability and sustainability of MagDESs in different environments and applications. Further research and development are necessary to fully understand and optimize the benefits and limitations of MagDESs.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.