Yingxin Liu , Shuai Liu , Jing Huang , Yu Liu , Qiyu Wang , Jinyuan Chen , Liwei Sun , Wenqing Tu
{"title":"Mitochondrial dysfunction in metabolic disorders induced by per- and polyfluoroalkyl substance mixtures in zebrafish larvae","authors":"Yingxin Liu , Shuai Liu , Jing Huang , Yu Liu , Qiyu Wang , Jinyuan Chen , Liwei Sun , Wenqing Tu","doi":"10.1016/j.envint.2023.107977","DOIUrl":null,"url":null,"abstract":"<div><p>Several per- and polyfluoroalkyl substances (PFAS) have been linked to metabolic disorders in organisms. However, few studies have considered their combined effects, which would be more representative of PFAS occurring in the environment. In this study, zebrafish embryos were exposed to a mixture of 18 PFAS at three environmentally relevant concentrations for 5 days to assess their bioconcentration and metabolic consequences. The burdens of ∑PFAS in zebrafish larvae were 0.12, 1.58, and 9.63 mg/kg in the 0.5, 5, and 50 μg/L treatment groups, respectively. Exposure to the PFAS mixture accelerated hatching and larval heart rates, increased energy expenditure, and reduced ATP levels and glucose contents due to decreased feed intake and glucose uptake. Metabolomic analysis revealed that exposure to the PFAS mixture enhanced glycolysis but inhibited phospholipid synthesis, and significantly increased the expression of lipid metabolism related genes (<em>srebf1</em>, <em>acox</em>, and <em>pparα</em>), which indicated enhanced <em>β</em>-oxidation. The significant changes in mitochondrial membrane potential, mitochondrial content, and the transcription of genes involved in the mitochondrial respiratory chain (<em>mfn2, ndufs1</em>, <em>atp5fa1</em>, and <em>mt-nd1</em>) and mitochondrial DNA replication and transcription (<em>18rs-rrn</em>, and <em>polg1</em>) suggested that exposure to the PFAS mixture could cause mitochondrial dysfunction and further disrupt glucose and lipid metabolic pathways, ultimately causing metabolic disorders in zebrafish larvae. These findings demonstrate the importance of assessing the metabolic effects of PFAS mixtures on early development in wildlife and humans.</p></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"176 ","pages":"Article 107977"},"PeriodicalIF":10.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412023002507","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Several per- and polyfluoroalkyl substances (PFAS) have been linked to metabolic disorders in organisms. However, few studies have considered their combined effects, which would be more representative of PFAS occurring in the environment. In this study, zebrafish embryos were exposed to a mixture of 18 PFAS at three environmentally relevant concentrations for 5 days to assess their bioconcentration and metabolic consequences. The burdens of ∑PFAS in zebrafish larvae were 0.12, 1.58, and 9.63 mg/kg in the 0.5, 5, and 50 μg/L treatment groups, respectively. Exposure to the PFAS mixture accelerated hatching and larval heart rates, increased energy expenditure, and reduced ATP levels and glucose contents due to decreased feed intake and glucose uptake. Metabolomic analysis revealed that exposure to the PFAS mixture enhanced glycolysis but inhibited phospholipid synthesis, and significantly increased the expression of lipid metabolism related genes (srebf1, acox, and pparα), which indicated enhanced β-oxidation. The significant changes in mitochondrial membrane potential, mitochondrial content, and the transcription of genes involved in the mitochondrial respiratory chain (mfn2, ndufs1, atp5fa1, and mt-nd1) and mitochondrial DNA replication and transcription (18rs-rrn, and polg1) suggested that exposure to the PFAS mixture could cause mitochondrial dysfunction and further disrupt glucose and lipid metabolic pathways, ultimately causing metabolic disorders in zebrafish larvae. These findings demonstrate the importance of assessing the metabolic effects of PFAS mixtures on early development in wildlife and humans.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.