{"title":"Combination DNA plus protein HIV vaccines.","authors":"Shan Lu","doi":"10.1007/s00281-006-0028-1","DOIUrl":null,"url":null,"abstract":"<p><p>A major challenge in developing an HIV vaccine is to identify immunogens and delivery methods that will elicit balanced humoral and cell mediate immunities against primary isolates of HIV with diverse sequence variations. Since the discovery of using protein coding nucleic acids (mainly DNA but also possible RNA) as a means of immunization in the early 1990s, there has been rapid progress in the creative use of this novel approach for the development of HIV vaccines. Although the initial impetus of using DNA immunization was for the induction of strong cell-mediated immunity, recent studies have greatly expanded our understanding on the potential role of DNA immunization to elicit improved quality of antibody responses. This function is particularly important to the development of HIV vaccines due to the inability of almost every previous attempt to develop broadly reactive neutralizing antibodies against primary HIV-1 isolates. Similar to the efforts of developing cell mediated immunity by using a DNA prime plus viral vector boost approach, the best antibody responses with DNA immunization were achieved when a protein boost component was included as part of the immunization schedule. Current experience has suggested that a combination DNA plus protein vaccination strategy is able to utilize the benefits of DNA and protein vaccines to effectively induce both cell-mediated immunity and antibody responses against invading organisms.</p>","PeriodicalId":74860,"journal":{"name":"Springer seminars in immunopathology","volume":" ","pages":"255-65"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00281-006-0028-1","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Springer seminars in immunopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00281-006-0028-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2006/9/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
A major challenge in developing an HIV vaccine is to identify immunogens and delivery methods that will elicit balanced humoral and cell mediate immunities against primary isolates of HIV with diverse sequence variations. Since the discovery of using protein coding nucleic acids (mainly DNA but also possible RNA) as a means of immunization in the early 1990s, there has been rapid progress in the creative use of this novel approach for the development of HIV vaccines. Although the initial impetus of using DNA immunization was for the induction of strong cell-mediated immunity, recent studies have greatly expanded our understanding on the potential role of DNA immunization to elicit improved quality of antibody responses. This function is particularly important to the development of HIV vaccines due to the inability of almost every previous attempt to develop broadly reactive neutralizing antibodies against primary HIV-1 isolates. Similar to the efforts of developing cell mediated immunity by using a DNA prime plus viral vector boost approach, the best antibody responses with DNA immunization were achieved when a protein boost component was included as part of the immunization schedule. Current experience has suggested that a combination DNA plus protein vaccination strategy is able to utilize the benefits of DNA and protein vaccines to effectively induce both cell-mediated immunity and antibody responses against invading organisms.