A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
Yujie Wang, Jiaqiang Tian, Zhendong Sun, Li Wang, Ruilong Xu, Mince Li, Zonghai Chen
{"title":"A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems","authors":"Yujie Wang,&nbsp;Jiaqiang Tian,&nbsp;Zhendong Sun,&nbsp;Li Wang,&nbsp;Ruilong Xu,&nbsp;Mince Li,&nbsp;Zonghai Chen","doi":"10.1016/j.rser.2020.110015","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of new energy electric vehicles and smart grids, the demand for batteries is increasing. The battery management system (BMS) plays a crucial role in the battery-powered energy storage system. This paper presents a systematic review of the most commonly used battery modeling and state estimation approaches for BMSs. The models include the physics-based electrochemical models, the integral and fractional order equivalent circuit models, and data-driven models. The state estimation approaches are analyzed from the perspectives of remaining capacity and energy estimation, power capability prediction, lifespan and health prognoses, and other crucial indexes in BMS. This present paper, through the analysis of literature, includes almost all states in the BMS. The estimation approaches of state-of-charge (SOC), state-of-energy (SOE), state-of-power (SOP), state-of-function (SOF), state-of-health (SOH), remaining useful life (RUL), remaining discharge time (RDT), state-of-balance (SOB), and state-of-temperature (SOT) are reviewed and discussed in a systematical way. Moreover, the challenges and outlooks of the research on future battery management are disclosed, in the hope of providing some inspirations to the development and design of the next-generation BMSs.</p></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rser.2020.110015","citationCount":"561","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032120303063","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 561

Abstract

With the rapid development of new energy electric vehicles and smart grids, the demand for batteries is increasing. The battery management system (BMS) plays a crucial role in the battery-powered energy storage system. This paper presents a systematic review of the most commonly used battery modeling and state estimation approaches for BMSs. The models include the physics-based electrochemical models, the integral and fractional order equivalent circuit models, and data-driven models. The state estimation approaches are analyzed from the perspectives of remaining capacity and energy estimation, power capability prediction, lifespan and health prognoses, and other crucial indexes in BMS. This present paper, through the analysis of literature, includes almost all states in the BMS. The estimation approaches of state-of-charge (SOC), state-of-energy (SOE), state-of-power (SOP), state-of-function (SOF), state-of-health (SOH), remaining useful life (RUL), remaining discharge time (RDT), state-of-balance (SOB), and state-of-temperature (SOT) are reviewed and discussed in a systematical way. Moreover, the challenges and outlooks of the research on future battery management are disclosed, in the hope of providing some inspirations to the development and design of the next-generation BMSs.

先进电池管理系统的电池建模和状态估计方法综述
随着新能源电动汽车和智能电网的快速发展,对电池的需求越来越大。电池管理系统(BMS)在电池供电的储能系统中起着至关重要的作用。本文系统地回顾了最常用的电池建模和状态估计方法。这些模型包括基于物理的电化学模型、积分阶和分数阶等效电路模型以及数据驱动模型。从剩余容量和能量估计、功率能力预测、寿命和健康预测等关键指标分析了BMS的状态估计方法。本文通过文献分析,囊括了BMS中几乎所有的国家。对荷电状态(SOC)、能量状态(SOE)、功率状态(SOP)、功能状态(SOF)、健康状态(SOH)、剩余使用寿命(RUL)、剩余放电时间(RDT)、平衡状态(SOB)和温度状态(SOT)的估计方法进行了系统的回顾和讨论。展望了未来电池管理研究面临的挑战和前景,希望对下一代电池管理系统的开发和设计提供一些启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信