Self-assembling of proteins and enzymes at nanoscale for biodevice applications.

R Rinaldi, P P Pompa, G Maruccio, A Biasco, P Visconti, D Pisignano, L Blasi, N Sgarbi, B Krebs, R Cingolani
{"title":"Self-assembling of proteins and enzymes at nanoscale for biodevice applications.","authors":"R Rinaldi,&nbsp;P P Pompa,&nbsp;G Maruccio,&nbsp;A Biasco,&nbsp;P Visconti,&nbsp;D Pisignano,&nbsp;L Blasi,&nbsp;N Sgarbi,&nbsp;B Krebs,&nbsp;R Cingolani","doi":"10.1049/ip-nbt:20040639","DOIUrl":null,"url":null,"abstract":"<p><p>Different nanotechnological strategies have been selected to implement biomolecular devices following a bottom-up or top-down approach depending on the biomolecule and on its functionality. Biomolecules have particular functionality and self-assembling capabilities that can be exploited for the implementation of both bioelectronic devices and multipurpose engineered biosurfaces. Surface preparation with supramolecular methods and microcontact printing have been developed and optimised to realise suitable functionalised surfaces. These surfaces can be used to link metalloproteins and enzymes for the implementation of nanobioelectronic devices and planar biosensors or to bind cells in order to promote their growth along predefined tracks and grooves. Some possible applications of these biosurfaces are shown and discussed. Results are presented for the realisation of a biomolecular nanodevice working in air based on the metalloprotein azurin immobilised in the solid state, the formation and characterisation of functional glutamate Dehydrogenase monolayers for nanobiosensing applications, the results of soft lithography processes on azurin for biosensor implementation, and the development of physiological self-assembled patterns of laminin-1 for cell culture applications and hybrid devices.</p>","PeriodicalId":87402,"journal":{"name":"IEE proceedings. Nanobiotechnology","volume":"151 3","pages":"101-8"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-nbt:20040639","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEE proceedings. Nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-nbt:20040639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Different nanotechnological strategies have been selected to implement biomolecular devices following a bottom-up or top-down approach depending on the biomolecule and on its functionality. Biomolecules have particular functionality and self-assembling capabilities that can be exploited for the implementation of both bioelectronic devices and multipurpose engineered biosurfaces. Surface preparation with supramolecular methods and microcontact printing have been developed and optimised to realise suitable functionalised surfaces. These surfaces can be used to link metalloproteins and enzymes for the implementation of nanobioelectronic devices and planar biosensors or to bind cells in order to promote their growth along predefined tracks and grooves. Some possible applications of these biosurfaces are shown and discussed. Results are presented for the realisation of a biomolecular nanodevice working in air based on the metalloprotein azurin immobilised in the solid state, the formation and characterisation of functional glutamate Dehydrogenase monolayers for nanobiosensing applications, the results of soft lithography processes on azurin for biosensor implementation, and the development of physiological self-assembled patterns of laminin-1 for cell culture applications and hybrid devices.

纳米级生物器件中蛋白质和酶的自组装。
根据生物分子及其功能,选择了不同的纳米技术策略来实现自下而上或自上而下的生物分子器件。生物分子具有特殊的功能和自组装能力,可用于生物电子器件和多用途工程生物表面的实现。表面制备与超分子方法和微接触印刷已经发展和优化,以实现合适的功能化表面。这些表面可以用来连接金属蛋白和酶,以实现纳米生物电子器件和平面生物传感器,或者结合细胞以促进它们沿着预定的轨道和凹槽生长。对这些生物表面的一些可能的应用进行了展示和讨论。本文介绍了基于固态固定金属蛋白azurin在空气中工作的生物分子纳米器件的实现,用于纳米生物传感应用的谷氨酸脱氢酶单层膜的形成和表征,用于生物传感器实现的azurin软光刻工艺的结果,以及用于细胞培养应用和杂交设备的laminin-1的生理自组装模式的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信