Preparation and purification of synthetic protein nanoparticulates.

M Jahanshahi, S Williams, A Lyddiatt, S A Shojaosadati
{"title":"Preparation and purification of synthetic protein nanoparticulates.","authors":"M Jahanshahi,&nbsp;S Williams,&nbsp;A Lyddiatt,&nbsp;S A Shojaosadati","doi":"10.1049/ip-nbt:20041085","DOIUrl":null,"url":null,"abstract":"<p><p>The protein nanostructure used in this study (bovine serum albumin; BSA nanoparticles) were fabricated with an average nanoparticle diameter 150 nm based on the principle of coacervation. Practical recovery of nanoparticulate mimics, of products such as plasmid DNA and viruses as putative gene therapy vectors from model systems, has been studied. The adsorbents employed in this study for the recovery of nanoparticles had one of four discrete designs i.e. microporous (pore size <0.2 microm), macroporous (pore size >0.8 microm), solid phase (nonporous) and pellicular (pore size <0.5 microm). Soluble protein was included in the study to represent cellular components of complex feedstocks and the separation of assemblies from components, while particulate protein served as surrogate size and charge mimics of less easily sourced viral and plasmid gene therapy vectors. Candidate adsorbents were physically characterised to assess their suitability for fluidised-bed operation, biochemically characterised exploiting batch-binding experimentation and laser scanning confocal microscopy. The adsorptive capacity of nanoparticulate products was strongly influenced by the physical design of the adsorbents, and microporous adsorbents appeared to be less suited for the recovery of nanoparticulate products. The generic application of such adsorbents for the recovery of nanoparticulate bioproducts is discussed.</p>","PeriodicalId":87402,"journal":{"name":"IEE proceedings. Nanobiotechnology","volume":"151 5","pages":"176-82"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-nbt:20041085","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEE proceedings. Nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-nbt:20041085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The protein nanostructure used in this study (bovine serum albumin; BSA nanoparticles) were fabricated with an average nanoparticle diameter 150 nm based on the principle of coacervation. Practical recovery of nanoparticulate mimics, of products such as plasmid DNA and viruses as putative gene therapy vectors from model systems, has been studied. The adsorbents employed in this study for the recovery of nanoparticles had one of four discrete designs i.e. microporous (pore size <0.2 microm), macroporous (pore size >0.8 microm), solid phase (nonporous) and pellicular (pore size <0.5 microm). Soluble protein was included in the study to represent cellular components of complex feedstocks and the separation of assemblies from components, while particulate protein served as surrogate size and charge mimics of less easily sourced viral and plasmid gene therapy vectors. Candidate adsorbents were physically characterised to assess their suitability for fluidised-bed operation, biochemically characterised exploiting batch-binding experimentation and laser scanning confocal microscopy. The adsorptive capacity of nanoparticulate products was strongly influenced by the physical design of the adsorbents, and microporous adsorbents appeared to be less suited for the recovery of nanoparticulate products. The generic application of such adsorbents for the recovery of nanoparticulate bioproducts is discussed.

合成蛋白质纳米颗粒的制备与纯化。
本研究中使用的蛋白质纳米结构(牛血清白蛋白;基于凝聚原理制备了平均粒径为150 nm的BSA纳米颗粒。实际回收纳米颗粒模拟物,产品如质粒DNA和病毒作为假定的基因治疗载体从模型系统,已经研究。本研究中用于回收纳米颗粒的吸附剂有四种不同的设计,即微孔(孔径0.8微米)、固相(无孔)和膜状(孔径)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信