C Minard-Basquin, R Kügler, N N Matsuzawa, A Yasuda
{"title":"Gold-nanoparticle-assisted oligonucleotide immobilisation for improved DNA detection.","authors":"C Minard-Basquin, R Kügler, N N Matsuzawa, A Yasuda","doi":"10.1049/ip-nbt:20055019","DOIUrl":null,"url":null,"abstract":"<p><p>Colloidal gold nanoparticles are investigated as a potential scaffold for the assisted immobilisation of probe oligonucleotides on silicon surfaces. A preliminary study is devoted to the examination of the immobilisation of DNA-modified gold nanoparticles as a function of time, concentration, salt and pH. The DNA-modified nanoparticles self-assembled onto solid surfaces in a three-dimensional self-assembled architecture. The functionalised surfaces are evaluated in diagnostic assays, where their potential to improve the efficiency of the hybridisation reaction is tested. The system utilising DNA-modified nanoparticles produced an enhancement in the hybridisation efficiency and the sensitivity limit by a factor 10 to 100 as compared to a conventional DNA immobilisation system on a planar surface.</p>","PeriodicalId":87402,"journal":{"name":"IEE proceedings. Nanobiotechnology","volume":"152 2","pages":"97-103"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-nbt:20055019","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEE proceedings. Nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-nbt:20055019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Colloidal gold nanoparticles are investigated as a potential scaffold for the assisted immobilisation of probe oligonucleotides on silicon surfaces. A preliminary study is devoted to the examination of the immobilisation of DNA-modified gold nanoparticles as a function of time, concentration, salt and pH. The DNA-modified nanoparticles self-assembled onto solid surfaces in a three-dimensional self-assembled architecture. The functionalised surfaces are evaluated in diagnostic assays, where their potential to improve the efficiency of the hybridisation reaction is tested. The system utilising DNA-modified nanoparticles produced an enhancement in the hybridisation efficiency and the sensitivity limit by a factor 10 to 100 as compared to a conventional DNA immobilisation system on a planar surface.