Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods
Rui Fu , Peng-Shuang Zhang , Yuan-Xing Jiang , Lin Sun , Xu-Hui Sun
{"title":"Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods","authors":"Rui Fu , Peng-Shuang Zhang , Yuan-Xing Jiang , Lin Sun , Xu-Hui Sun","doi":"10.1016/j.chemosphere.2022.136993","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Electrochemical Advanced Oxidation Process (EAOP) has been applied to the degradation of refractory pollutants in wastewater due to its strong oxidation capacity, high degradation efficiency, simple operation, and mild reaction. Among electrochemical processes, anodic oxidation (AO) is the most widely used and its mechanism is mainly divided into direct oxidation and indirect oxidation. Direct oxidation means that pollutants are oxidized at the anode by direct </span>electron transfer. Indirect oxidation refers to the generation of active species during the electrolytic reaction, which acts on pollutants. The mechanism of AO process is controlled by many factors, including electrode type, </span>electrocatalyst material, wastewater composition, pH, applied current and voltage levels. It is very important to explore the reaction mechanism of electrochemical treatment, which determines the efficiency of the reaction, the products of the reaction, and the extent of reaction. This paper firstly reviews the current research progress on the mechanism of AO process, and summarizes in detail the different mechanisms caused by influencing factors under common AO process. Then, strategies and methods to distinguish direct oxidation and indirect oxidation mechanisms are reviewed, such as intermediate product analysis, electrochemical test analysis, active species detection, theoretical calculation, and the limitations of these methods are analyzed. Finally some suggestions are put forward for the study of the mechanism of electrochemical advanced oxidation.</p></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"311 ","pages":"Article 136993"},"PeriodicalIF":8.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653522034865","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 14
Abstract
Electrochemical Advanced Oxidation Process (EAOP) has been applied to the degradation of refractory pollutants in wastewater due to its strong oxidation capacity, high degradation efficiency, simple operation, and mild reaction. Among electrochemical processes, anodic oxidation (AO) is the most widely used and its mechanism is mainly divided into direct oxidation and indirect oxidation. Direct oxidation means that pollutants are oxidized at the anode by direct electron transfer. Indirect oxidation refers to the generation of active species during the electrolytic reaction, which acts on pollutants. The mechanism of AO process is controlled by many factors, including electrode type, electrocatalyst material, wastewater composition, pH, applied current and voltage levels. It is very important to explore the reaction mechanism of electrochemical treatment, which determines the efficiency of the reaction, the products of the reaction, and the extent of reaction. This paper firstly reviews the current research progress on the mechanism of AO process, and summarizes in detail the different mechanisms caused by influencing factors under common AO process. Then, strategies and methods to distinguish direct oxidation and indirect oxidation mechanisms are reviewed, such as intermediate product analysis, electrochemical test analysis, active species detection, theoretical calculation, and the limitations of these methods are analyzed. Finally some suggestions are put forward for the study of the mechanism of electrochemical advanced oxidation.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.