Vascular smooth muscle stiffness and its role in aging.

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Current topics in membranes Pub Date : 2020-01-01 Epub Date: 2020-10-12 DOI:10.1016/bs.ctm.2020.08.008
Andreea Trache, Michael P Massett, Christopher R Woodman
{"title":"Vascular smooth muscle stiffness and its role in aging.","authors":"Andreea Trache,&nbsp;Michael P Massett,&nbsp;Christopher R Woodman","doi":"10.1016/bs.ctm.2020.08.008","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular smooth muscle cells (VSMC) are now considered important contributors to the pathophysiological and biophysical mechanisms underlying arterial stiffening in aging. Here, we review mechanisms whereby VSMC stiffening alters vascular function and contributes to the changes in vascular stiffening observed in aging and cardiovascular disease. Vascular stiffening in arterial aging was historically associated with changes in the extracellular matrix; however, new evidence suggests that endothelial and vascular smooth muscle cell stiffness also contribute to overall blood vessel stiffness. Furthermore, VSMC play an integral role in regulating matrix deposition and vessel wall contractility via interaction between the actomyosin contractile unit and adhesion structures that anchor the cell within the extracellular matrix. Aged-induce phenotypic modulation of VSMC from a contractile to a synthetic phenotype is associated with decreased cellular contractility and increased cell stiffness. Aged VSMC also display reduced mechanosensitivity and adaptation to mechanical signals from their microenvironment due to impaired intracellular signaling. Finally, evidence for decreased contractility in arteries from aged animals demonstrate that changes at the cellular level result in decreased functional properties at the tissue level.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"217-253"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ctm.2020.08.008","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in membranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctm.2020.08.008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

Abstract

Vascular smooth muscle cells (VSMC) are now considered important contributors to the pathophysiological and biophysical mechanisms underlying arterial stiffening in aging. Here, we review mechanisms whereby VSMC stiffening alters vascular function and contributes to the changes in vascular stiffening observed in aging and cardiovascular disease. Vascular stiffening in arterial aging was historically associated with changes in the extracellular matrix; however, new evidence suggests that endothelial and vascular smooth muscle cell stiffness also contribute to overall blood vessel stiffness. Furthermore, VSMC play an integral role in regulating matrix deposition and vessel wall contractility via interaction between the actomyosin contractile unit and adhesion structures that anchor the cell within the extracellular matrix. Aged-induce phenotypic modulation of VSMC from a contractile to a synthetic phenotype is associated with decreased cellular contractility and increased cell stiffness. Aged VSMC also display reduced mechanosensitivity and adaptation to mechanical signals from their microenvironment due to impaired intracellular signaling. Finally, evidence for decreased contractility in arteries from aged animals demonstrate that changes at the cellular level result in decreased functional properties at the tissue level.

血管平滑肌僵硬及其在衰老中的作用。
血管平滑肌细胞(VSMC)现在被认为是动脉硬化的病理生理和生物物理机制的重要贡献者。在这里,我们回顾了VSMC硬化改变血管功能的机制,并有助于在衰老和心血管疾病中观察到的血管硬化的变化。动脉老化中的血管硬化与细胞外基质的改变有关;然而,新的证据表明,内皮和血管平滑肌细胞的僵硬也有助于整体血管僵硬。此外,VSMC在调节基质沉积和血管壁收缩方面发挥着不可或缺的作用,通过肌动球蛋白收缩单元和将细胞锚定在细胞外基质内的粘附结构之间的相互作用。年龄诱导的VSMC从收缩到合成表型的表型调节与细胞收缩性降低和细胞刚度增加有关。由于细胞内信号传导受损,衰老的VSMC也表现出对微环境机械信号的机械敏感性和适应性降低。最后,老年动物动脉收缩能力下降的证据表明,细胞水平的变化导致组织水平的功能特性下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current topics in membranes
Current topics in membranes 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信