Using Integrative Biology to Infer Adaptation from Comparisons of Two (or a Few) Species.

IF 1.8 3区 生物学 Q3 PHYSIOLOGY
Christian L Cox, Michael L Logan
{"title":"Using Integrative Biology to Infer Adaptation from Comparisons of Two (or a Few) Species.","authors":"Christian L Cox,&nbsp;Michael L Logan","doi":"10.1086/714018","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractPhylogenetic comparative methods represent a major advance in integrative and comparative biology and have allowed researchers to rigorously test for adaptation in a macroevolutionary framework. However, phylogenetic comparative methods require trait data for many species, which is impractical for certain taxonomic groups and trait types. We propose that the philosophical principle of severity can be implemented in an integrative framework to generate strong inference of adaptation in studies that compare only a few populations or species. This approach requires (1) ensuring that the study system contains species that are relatively closely related; (2) formulating a specific, clear, overarching hypothesis that can be subjected to integrative testing across levels of biological organization (e.g., ecology, behavior, morphology, physiology, and genetics); (3) collecting data that avoid statistical underdetermination and thus allow severe tests of hypotheses; and (4) systematically refining and refuting alternative hypotheses. Although difficult to collect for more than a few species, detailed, integrative data can be used to differentiate among several potential agents of selection. In this way, integrative studies of small numbers of closely related species can complement and even improve on broadscale phylogenetic comparative studies by revealing the specific drivers of adaptation.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"94 3","pages":"162-170"},"PeriodicalIF":1.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/714018","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/714018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

AbstractPhylogenetic comparative methods represent a major advance in integrative and comparative biology and have allowed researchers to rigorously test for adaptation in a macroevolutionary framework. However, phylogenetic comparative methods require trait data for many species, which is impractical for certain taxonomic groups and trait types. We propose that the philosophical principle of severity can be implemented in an integrative framework to generate strong inference of adaptation in studies that compare only a few populations or species. This approach requires (1) ensuring that the study system contains species that are relatively closely related; (2) formulating a specific, clear, overarching hypothesis that can be subjected to integrative testing across levels of biological organization (e.g., ecology, behavior, morphology, physiology, and genetics); (3) collecting data that avoid statistical underdetermination and thus allow severe tests of hypotheses; and (4) systematically refining and refuting alternative hypotheses. Although difficult to collect for more than a few species, detailed, integrative data can be used to differentiate among several potential agents of selection. In this way, integrative studies of small numbers of closely related species can complement and even improve on broadscale phylogenetic comparative studies by revealing the specific drivers of adaptation.

利用整合生物学从两个(或几个)物种的比较中推断适应性。
系统发育比较方法代表了综合生物学和比较生物学的重大进展,使研究人员能够在宏观进化框架下严格测试适应。然而,系统发育比较方法需要许多物种的性状数据,这对于某些分类类群和性状类型是不切实际的。我们建议,严重性的哲学原则可以在一个综合框架中实施,以在仅比较少数种群或物种的研究中产生强有力的适应推断。这种方法需要(1)确保研究系统包含相对密切相关的物种;(2)制定一个具体的、清晰的、总体的假设,该假设可以在生物组织的各个层面(例如,生态学、行为学、形态学、生理学和遗传学)进行综合测试;(3)收集的数据避免统计不充分,从而允许对假设进行严格检验;(4)系统地提炼和驳斥其他假说。虽然很难收集到超过几个物种的数据,但详细的、综合的数据可以用来区分几种潜在的选择因素。通过这种方式,对少数密切相关物种的综合研究可以通过揭示适应的具体驱动因素来补充甚至改进大规模的系统发育比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
6.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context. Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信