Yeison Núñez-de la Rosa , Luis Guillermo Cuadrado Durango , Moacir Rossi Forim , Otaciro Rangel Nascimento , Peter Hammer , José M. Aquino
{"title":"Unraveling the time evolution and post mortem changes of nanometric MnOOH during in situ oxidation of ciprofloxacin by activated peroxymonosulfate","authors":"Yeison Núñez-de la Rosa , Luis Guillermo Cuadrado Durango , Moacir Rossi Forim , Otaciro Rangel Nascimento , Peter Hammer , José M. Aquino","doi":"10.1016/j.apcatb.2023.122439","DOIUrl":null,"url":null,"abstract":"<div><p>Nanometric MnOOH compound was synthesized by a green approach, characterized, and used to remove ciprofloxacin (CIP) antibiotic by <em>in situ</em><span> chemical oxidation using peroxymonosulfate (PMS). The effects of varying concentrations of MnOOH, PMS and pH, on morphological, structural, chemical, and electrochemical changes were studied during and after the experiments. The CIP molecule was completely oxidized and partially mineralized (>60%) after 6 h under acidic conditions. The mechanism of CIP degradation was induced by PMS activated oxidants (HO</span><sup>•</sup> and <sup>1</sup>O<sub>2</sub>) and, to a lesser extent, directly on the surface of MnOOH. The latter process was evidenced by transmission electron microscopy showing the formation of an amorphous shell (MnO<sub>2</sub>) over MnOOH crystallites, as verified using X-ray photoelectron spectroscopy and the subsequent increase of the charge transfer resistance that hindered a further electron transfer to the PMS oxidant. Such behavior is recoverable when using a freshly prepared PMS solution.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"327 ","pages":"Article 122439"},"PeriodicalIF":21.1000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323000826","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Nanometric MnOOH compound was synthesized by a green approach, characterized, and used to remove ciprofloxacin (CIP) antibiotic by in situ chemical oxidation using peroxymonosulfate (PMS). The effects of varying concentrations of MnOOH, PMS and pH, on morphological, structural, chemical, and electrochemical changes were studied during and after the experiments. The CIP molecule was completely oxidized and partially mineralized (>60%) after 6 h under acidic conditions. The mechanism of CIP degradation was induced by PMS activated oxidants (HO• and 1O2) and, to a lesser extent, directly on the surface of MnOOH. The latter process was evidenced by transmission electron microscopy showing the formation of an amorphous shell (MnO2) over MnOOH crystallites, as verified using X-ray photoelectron spectroscopy and the subsequent increase of the charge transfer resistance that hindered a further electron transfer to the PMS oxidant. Such behavior is recoverable when using a freshly prepared PMS solution.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.