Synthesis of antibacterial polyether biguanide curing agent and its cured antibacterial epoxy resin.

IF 1.8 4区 化学 Q3 POLYMER SCIENCE
Rui Li, Guoxing Yang, Yudan Wang, Lijia Liu, Qiang Wang, Guan Wang, Xiao Ouyang
{"title":"Synthesis of antibacterial polyether biguanide curing agent and its cured antibacterial epoxy resin.","authors":"Rui Li, Guoxing Yang, Yudan Wang, Lijia Liu, Qiang Wang, Guan Wang, Xiao Ouyang","doi":"10.1080/15685551.2021.1900025","DOIUrl":null,"url":null,"abstract":"<p><p>At present, bacteria continue to threaten human health, and the resistance of bacteria to antibiotics continues to increase, so the development of new antibacterial agents and antibacterial materials is increasingly important to ensure human health. In this paper, three polyether biguanide compounds with high antibacterial properties were synthesized by reacting polyetheramine T403 with o-tolylbiguanide, m-tolylbiguanide and p-tolylbiguanide (o-TTB, m-TTB and p-TTB), respectively. The antimicrobial performance of polyether biguanide against E. coli and S. aureus was evaluated using a minimum inhibitory concentration method, and the results showed that the synthesized polyether biguanide exhibited efficient and broad-spectrum antimicrobial effects. Among them, o-tolyl biguanide derivative o-TTB showed the best antimicrobial performance, with minimum inhibitory concentrations of 20 and 15 μg/mL against E. coli and S. aureus, respectively. Then, epoxy resin E51 was cured using the obtained TTB as a curing agent to prepare an epoxy resin with antibacterial properties. The inhibition of the growth of S. aureus by the cured o-TTB/E51 resin was investigated by incubating the cured epoxy resin with bacteria, and the results showed that the cured resin had a significant inhibitory effect on the growth of bacteria. The non-isothermal curing kinetics of the o-TTB/E51 system were investigated by differential scanning calorimetry (DSC) to determine the optimized curing reaction temperature, curing kinetic parameters and curing kinetics equation.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"24 1","pages":"63-72"},"PeriodicalIF":1.8000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ff/f1/TDMP_24_1900025.PMC7993382.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2021.1900025","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

At present, bacteria continue to threaten human health, and the resistance of bacteria to antibiotics continues to increase, so the development of new antibacterial agents and antibacterial materials is increasingly important to ensure human health. In this paper, three polyether biguanide compounds with high antibacterial properties were synthesized by reacting polyetheramine T403 with o-tolylbiguanide, m-tolylbiguanide and p-tolylbiguanide (o-TTB, m-TTB and p-TTB), respectively. The antimicrobial performance of polyether biguanide against E. coli and S. aureus was evaluated using a minimum inhibitory concentration method, and the results showed that the synthesized polyether biguanide exhibited efficient and broad-spectrum antimicrobial effects. Among them, o-tolyl biguanide derivative o-TTB showed the best antimicrobial performance, with minimum inhibitory concentrations of 20 and 15 μg/mL against E. coli and S. aureus, respectively. Then, epoxy resin E51 was cured using the obtained TTB as a curing agent to prepare an epoxy resin with antibacterial properties. The inhibition of the growth of S. aureus by the cured o-TTB/E51 resin was investigated by incubating the cured epoxy resin with bacteria, and the results showed that the cured resin had a significant inhibitory effect on the growth of bacteria. The non-isothermal curing kinetics of the o-TTB/E51 system were investigated by differential scanning calorimetry (DSC) to determine the optimized curing reaction temperature, curing kinetic parameters and curing kinetics equation.

Abstract Image

Abstract Image

Abstract Image

抗菌聚醚双胍固化剂及其固化抗菌环氧树脂的合成。
目前,细菌仍在威胁着人类的健康,而细菌对抗生素的耐药性也在不断增强,因此开发新的抗菌剂和抗菌材料对保障人类健康越来越重要。本文通过聚醚胺 T403 分别与邻甲苯双胍、间甲苯双胍和对甲苯双胍反应(邻甲苯双胍、间甲苯双胍和对甲苯双胍),合成了三种具有较高抗菌性能的聚醚双胍化合物。采用最小抑菌浓度法评估了聚醚双胍对大肠杆菌和金黄色葡萄球菌的抗菌性能,结果表明合成的聚醚双胍具有高效、广谱的抗菌作用。其中,邻甲苯基双胍衍生物 o-TTB 的抗菌性能最好,对大肠杆菌和金黄色葡萄球菌的最小抑菌浓度分别为 20 和 15 μg/mL。然后,用获得的 TTB 作为固化剂固化环氧树脂 E51,制备出具有抗菌性能的环氧树脂。通过将固化后的 o-TTB/E51 树脂与细菌培养,研究了固化后的环氧树脂对金黄色葡萄球菌生长的抑制作用,结果表明固化后的树脂对细菌的生长有明显的抑制作用。通过差示扫描量热法(DSC)研究了 o-TTB/E51 系统的非等温固化动力学,确定了优化的固化反应温度、固化动力学参数和固化动力学方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信