Clinical Relevance of Pre-Existing and Treatment-Induced Anti-Poly(Ethylene Glycol) Antibodies.

IF 2.2 Q3 ENGINEERING, BIOMEDICAL
Helena Freire Haddad, Jacqueline A Burke, Evan A Scott, Guillermo A Ameer
{"title":"Clinical Relevance of Pre-Existing and Treatment-Induced Anti-Poly(Ethylene Glycol) Antibodies.","authors":"Helena Freire Haddad, Jacqueline A Burke, Evan A Scott, Guillermo A Ameer","doi":"10.1007/s40883-021-00198-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Poly(ethylene glycol) (PEG) is a nontoxic, hydrophilic polymer that is often covalently attached to proteins, drugs, tissues, or materials; a procedure commonly referred to as PEGylation. PEGylation improves solubility, circulation time, and reduces immunogenicity of therapeutic molecules. Currently, there are 21 PEGylated drugs approved by the Food and Drug Administration (FDA), and more in the developmental stage. In addition to the polymer's applications in the clinic, PEG is widely used as a solvent and emulsifying agent in the formulation of cosmetics, cleaning, and personal care products. Due to the ubiquitous presence of the polymer in everyday products, patients can develop antibodies against PEG (αPEG Abs) that can be problematic when a PEGylated drug is administered. These αPEG Abs can provoke hypersensitivity reactions, accelerated drug clearance, and decreased therapeutic efficacy. Herein, we review how the prevalence of PEG in everyday products has induced αPEG Abs within the general public as well as the effect of these Abs on the performance of PEGylated therapeutics. We will focus on clinical manifestations following the administration of PEGylated drugs.</p><p><strong>Lay summary: </strong>Poly(ethylene glycol) (PEG) is a polymer found in products including cosmetics, personal care products, cleaning agents, medicine, and food. Due to the prevalence of PEG, people can develop antibodies (αPEG Abs) against the polymer, which recognize PEG as foreign. Of note, PEG is frequently incorporated into drug formulations to improve therapeutic efficacy. Complications can arise when a patient receiving a PEGylated drug has previously developed αPEG Abs from interactions with PEG in everyday products. The presence of high concentrations of αPEG Abs in blood can result in decreased treatment efficacy and allergic reactions to a wide range of therapeutics.</p>","PeriodicalId":20936,"journal":{"name":"Regenerative Engineering and Translational Medicine","volume":"8 1","pages":"32-42"},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993857/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Engineering and Translational Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40883-021-00198-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Poly(ethylene glycol) (PEG) is a nontoxic, hydrophilic polymer that is often covalently attached to proteins, drugs, tissues, or materials; a procedure commonly referred to as PEGylation. PEGylation improves solubility, circulation time, and reduces immunogenicity of therapeutic molecules. Currently, there are 21 PEGylated drugs approved by the Food and Drug Administration (FDA), and more in the developmental stage. In addition to the polymer's applications in the clinic, PEG is widely used as a solvent and emulsifying agent in the formulation of cosmetics, cleaning, and personal care products. Due to the ubiquitous presence of the polymer in everyday products, patients can develop antibodies against PEG (αPEG Abs) that can be problematic when a PEGylated drug is administered. These αPEG Abs can provoke hypersensitivity reactions, accelerated drug clearance, and decreased therapeutic efficacy. Herein, we review how the prevalence of PEG in everyday products has induced αPEG Abs within the general public as well as the effect of these Abs on the performance of PEGylated therapeutics. We will focus on clinical manifestations following the administration of PEGylated drugs.

Lay summary: Poly(ethylene glycol) (PEG) is a polymer found in products including cosmetics, personal care products, cleaning agents, medicine, and food. Due to the prevalence of PEG, people can develop antibodies (αPEG Abs) against the polymer, which recognize PEG as foreign. Of note, PEG is frequently incorporated into drug formulations to improve therapeutic efficacy. Complications can arise when a patient receiving a PEGylated drug has previously developed αPEG Abs from interactions with PEG in everyday products. The presence of high concentrations of αPEG Abs in blood can result in decreased treatment efficacy and allergic reactions to a wide range of therapeutics.

Abstract Image

Abstract Image

Abstract Image

已有的和治疗诱发的抗聚乙二醇抗体的临床意义
摘要:聚乙二醇(PEG)是一种无毒的亲水性聚合物,通常与蛋白质、药物、组织或材料共价连接;这种过程通常称为 PEG 化。PEG 化可提高治疗分子的溶解度和循环时间,并降低免疫原性。目前,美国食品和药物管理局(FDA)批准了 21 种 PEG 化药物,还有更多药物正在研发阶段。除了在临床上的应用,PEG 还被广泛用作溶剂和乳化剂,用于配制化妆品、清洁剂和个人护理产品。由于这种聚合物在日常用品中无处不在,患者可能会产生针对 PEG 的抗体(αPEG Abs),在服用 PEG 化药物时可能会产生问题。这些 αPEG 抗体可引起超敏反应、加速药物清除和降低疗效。在此,我们将回顾 PEG 在日常用品中的普遍存在如何诱发普通大众体内的 αPEG Abs,以及这些 Abs 对 PEG 化治疗药物性能的影响。我们将重点关注服用 PEG 化药物后的临床表现。摘要:聚乙二醇(PEG)是一种聚合物,可用于化妆品、个人护理产品、清洁剂、药品和食品等产品中。由于 PEG 的普遍存在,人们会产生针对这种聚合物的抗体(αPEG Abs),从而将 PEG 识别为异物。值得注意的是,PEG 经常被加入药物制剂中以提高疗效。如果接受 PEG 化药物治疗的患者之前曾因与日常用品中的 PEG 发生相互作用而产生过 αPEG 抗体,则可能出现并发症。血液中出现高浓度的 αPEG Abs 会导致治疗效果下降,并对多种治疗药物产生过敏反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
11.50%
发文量
41
期刊介绍: Regenerative Engineering is an international journal covering convergence of the disciplines of tissue engineering, advanced materials science, stem cell research, the physical sciences, and areas of developmental biology. This convergence brings exciting opportunities to translate bench-top research into bedside methods, allowing the possibility of moving beyond maintaining or repairing tissues to regenerating them. The journal encourages both top-down engineering approaches and bottom-up strategies integrating materials science with stem cell research and developmental biology. Convergence papers on instructive biomaterials, stimuli-responsive biomaterials, micro- and nano-patterning for regenerative engineering, elastomeric biomaterials, hydrogels for tissue engineering, and rapid prototyping and bioprinting approaches are particularly welcome. The journal provides a premier, single-blind peer-reviewed forum for the publication of original papers, authoritative reviews, rapid communications, news and views, and opinion papers addressing the most important issues and efforts toward successfully regenerating complex human tissues and organs. All research articles feature a lay abstract highlighting the relevance and future impact for patients, government and other health officials, and members of the general public. Bridging the gap between the lab and the clinic, the journal also serves as a dedicated platform for showcasing translational research that brings basic scientific research and discoveries into clinical methods and therapies, contributing to the improvement of human health care. Topics covered in Regenerative Engineering and Translational Medicine include: Advanced materials science for regenerative and biomedical applicationsStem cells for tissue regenerationDrug delivery for tissue regenerationNanomaterials and nanobiotechnology for tissue regenerationStudies combining tissue engineering/regeneration with developmental biologyConvergence research in pre-clinical and clinical phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信