{"title":"Novel Nondestructive Biosensors for the Food Industry.","authors":"Hazal Turasan, Jozef Kokini","doi":"10.1146/annurev-food-062520-082307","DOIUrl":null,"url":null,"abstract":"<p><p>An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"12 ","pages":"539-566"},"PeriodicalIF":10.6000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of food science and technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-food-062520-082307","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.
期刊介绍:
Since 2010, the Annual Review of Food Science and Technology has been a key source for current developments in the multidisciplinary field. The covered topics span food microbiology, food-borne pathogens, and fermentation; food engineering, chemistry, biochemistry, rheology, and sensory properties; novel ingredients and nutrigenomics; emerging technologies in food processing and preservation; and applications of biotechnology and nanomaterials in food systems.