Modeling Food Particle Systems: A Review of Current Progress and Challenges.

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED
Lennart Fries
{"title":"Modeling Food Particle Systems: A Review of Current Progress and Challenges.","authors":"Lennart Fries","doi":"10.1146/annurev-chembioeng-121820-081524","DOIUrl":null,"url":null,"abstract":"<p><p>For many years, food engineers have attempted to describe physical phenomena such as heat and mass transfer in food via mathematical models. Still, the impact and benefits of computer-aided engineering are less established in food than in most other industries today. Complexity in the structure and composition of food matrices are largely responsible for this gap. During processing of food, its temperature, moisture, and structure can change continuously, along with its physical properties. We summarize the knowledge foundation, recent progress, and remaining limitations in modeling food particle systems in four relevant areas: flowability, size reduction, drying, and granulation and agglomeration. Our goal is to enable researchers in academia and industry dealing with food powders to identify approaches to address their challenges with adequate model systems or through structural and compositional simplifications. With advances in computer simulation capacity, detailed particle-scale models are now available for many applications. Here, we discuss aspects that require further attention, especially related to physics-based contact models for discrete-element models of food particle systems.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-121820-081524","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

For many years, food engineers have attempted to describe physical phenomena such as heat and mass transfer in food via mathematical models. Still, the impact and benefits of computer-aided engineering are less established in food than in most other industries today. Complexity in the structure and composition of food matrices are largely responsible for this gap. During processing of food, its temperature, moisture, and structure can change continuously, along with its physical properties. We summarize the knowledge foundation, recent progress, and remaining limitations in modeling food particle systems in four relevant areas: flowability, size reduction, drying, and granulation and agglomeration. Our goal is to enable researchers in academia and industry dealing with food powders to identify approaches to address their challenges with adequate model systems or through structural and compositional simplifications. With advances in computer simulation capacity, detailed particle-scale models are now available for many applications. Here, we discuss aspects that require further attention, especially related to physics-based contact models for discrete-element models of food particle systems.

食物颗粒系统建模:当前进展与挑战综述。
多年来,食品工程师一直试图通过数学模型来描述食物中的传热传质等物理现象。尽管如此,计算机辅助工程的影响和好处在食品行业还不如在大多数其他行业那么明显。食物基质结构和组成的复杂性是造成这一差距的主要原因。在食品加工过程中,食品的温度、水分和结构会不断变化,其物理性质也会不断变化。本文总结了食品颗粒系统建模的知识基础、最新进展以及存在的局限性,涉及四个相关领域:流动性、粒度还原、干燥、造粒和团聚。我们的目标是使学术界和工业界处理食品粉末的研究人员能够通过适当的模型系统或通过结构和成分简化来确定解决其挑战的方法。随着计算机模拟能力的进步,详细的粒子尺度模型现在可用于许多应用。在这里,我们讨论了需要进一步关注的方面,特别是与食物颗粒系统离散元模型的基于物理的接触模型有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信