PET imaging of colony-stimulating factor 1 receptor: A head-to-head comparison of a novel radioligand, 11C-GW2580, and 11C-CPPC, in mouse models of acute and chronic neuroinflammation and a rhesus monkey.
Xiaoyun Zhou, Bin Ji, Chie Seki, Yuji Nagai, Takafumi Minamimoto, Masayuki Fujinaga, Ming-Rong Zhang, Takashi Saito, Takaomi C Saido, Tetsuya Suhara, Yasuyuki Kimura, Makoto Higuchi
{"title":"PET imaging of colony-stimulating factor 1 receptor: A head-to-head comparison of a novel radioligand, <sup>11</sup>C-GW2580, and <sup>11</sup>C-CPPC, in mouse models of acute and chronic neuroinflammation and a rhesus monkey.","authors":"Xiaoyun Zhou, Bin Ji, Chie Seki, Yuji Nagai, Takafumi Minamimoto, Masayuki Fujinaga, Ming-Rong Zhang, Takashi Saito, Takaomi C Saido, Tetsuya Suhara, Yasuyuki Kimura, Makoto Higuchi","doi":"10.1177/0271678X211004146","DOIUrl":null,"url":null,"abstract":"<p><p>Colony-stimulating factor 1 receptor (CSF1R) is a specific biomarker for microglia. In this study, we developed a novel PET radioligand for CSF1R, <sup>11</sup>C-GW2580, and compared it to a reported CSF1R tracer, <sup>11</sup>C-CPPC, in mouse models of acute and chronic neuroinflammation and a rhesus monkey. Dynamic <sup>11</sup>C-GW2580- and <sup>11</sup>C-CPPC-PET images were quantified by reference tissue-based models and standardized uptake value ratio. Both tracers exhibited increased uptake in the lesioned striata of lipopolysaccharide-injected mice and in the forebrains of <i>App<sup>NL-G-F/NL-G-F</sup></i>-knock-in mice, spatially in agreement with an increased 18-kDa translocator protein radioligand retention. Moreover, <sup>11</sup>C-GW2580 captured changes in CSF1R availability more sensitively than <sup>11</sup>C-CPPC, with a larger dynamic range and a smaller inter-individual variability, in these model animals. PET imaging of CSF1R in a rhesus monkey displayed moderate-to-high tracer retention in the brain at baseline. Homologous blocker (i. e. unlabeled tracer) treatment reduced the uptake of <sup>11</sup>C-GW2580 by ∼30% in all examined brain regions except for centrum semi-ovale white matter, but did not affect the retention of <sup>11</sup>C-CPPC. In summary, our results demonstrated that <sup>11</sup>C-GW2580-PET captured inflammatory microgliosis in the mouse brain with higher sensitivity than a reported radioligand, and displayed saturable binding in the monkey brain, potentially providing an imaging-based quantitative biomarker for reactive microgliosis.</p>","PeriodicalId":520660,"journal":{"name":"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism","volume":" ","pages":"2410-2422"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0271678X211004146","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X211004146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Colony-stimulating factor 1 receptor (CSF1R) is a specific biomarker for microglia. In this study, we developed a novel PET radioligand for CSF1R, 11C-GW2580, and compared it to a reported CSF1R tracer, 11C-CPPC, in mouse models of acute and chronic neuroinflammation and a rhesus monkey. Dynamic 11C-GW2580- and 11C-CPPC-PET images were quantified by reference tissue-based models and standardized uptake value ratio. Both tracers exhibited increased uptake in the lesioned striata of lipopolysaccharide-injected mice and in the forebrains of AppNL-G-F/NL-G-F-knock-in mice, spatially in agreement with an increased 18-kDa translocator protein radioligand retention. Moreover, 11C-GW2580 captured changes in CSF1R availability more sensitively than 11C-CPPC, with a larger dynamic range and a smaller inter-individual variability, in these model animals. PET imaging of CSF1R in a rhesus monkey displayed moderate-to-high tracer retention in the brain at baseline. Homologous blocker (i. e. unlabeled tracer) treatment reduced the uptake of 11C-GW2580 by ∼30% in all examined brain regions except for centrum semi-ovale white matter, but did not affect the retention of 11C-CPPC. In summary, our results demonstrated that 11C-GW2580-PET captured inflammatory microgliosis in the mouse brain with higher sensitivity than a reported radioligand, and displayed saturable binding in the monkey brain, potentially providing an imaging-based quantitative biomarker for reactive microgliosis.