The effect of random-effects misspecification on classification accuracy.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Riham El Saeiti, Marta García-Fiñana, David M Hughes
{"title":"The effect of random-effects misspecification on classification accuracy.","authors":"Riham El Saeiti, Marta García-Fiñana, David M Hughes","doi":"10.1515/ijb-2019-0159","DOIUrl":null,"url":null,"abstract":"<p><p>Mixed models are a useful way of analysing longitudinal data. Random effects terms allow modelling of patient specific deviations from the overall trend over time. Correlation between repeated measurements are captured by specifying a joint distribution for all random effects in a model. Typically, this joint distribution is assumed to be a multivariate normal distribution. For Gaussian outcomes misspecification of the random effects distribution usually has little impact. However, when the outcome is discrete (e.g. counts or binary outcomes) generalised linear mixed models (GLMMs) are used to analyse longitudinal trends. Opinion is divided about how robust GLMMs are to misspecification of the random effects. Previous work explored the impact of random effects misspecification on the bias of model parameters in single outcome GLMMs. Accepting that these model parameters may be biased, we investigate whether this affects our ability to classify patients into clinical groups using a longitudinal discriminant analysis. We also consider multiple outcomes, which can significantly increase the dimensions of the random effects distribution when modelled simultaneously. We show that when there is severe departure from normality, more flexible mixture distributions can give better classification accuracy. However, in many cases, wrongly assuming a single multivariate normal distribution has little impact on classification accuracy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2019-0159","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2019-0159","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Mixed models are a useful way of analysing longitudinal data. Random effects terms allow modelling of patient specific deviations from the overall trend over time. Correlation between repeated measurements are captured by specifying a joint distribution for all random effects in a model. Typically, this joint distribution is assumed to be a multivariate normal distribution. For Gaussian outcomes misspecification of the random effects distribution usually has little impact. However, when the outcome is discrete (e.g. counts or binary outcomes) generalised linear mixed models (GLMMs) are used to analyse longitudinal trends. Opinion is divided about how robust GLMMs are to misspecification of the random effects. Previous work explored the impact of random effects misspecification on the bias of model parameters in single outcome GLMMs. Accepting that these model parameters may be biased, we investigate whether this affects our ability to classify patients into clinical groups using a longitudinal discriminant analysis. We also consider multiple outcomes, which can significantly increase the dimensions of the random effects distribution when modelled simultaneously. We show that when there is severe departure from normality, more flexible mixture distributions can give better classification accuracy. However, in many cases, wrongly assuming a single multivariate normal distribution has little impact on classification accuracy.

随机效应错配对分类精度的影响。
混合模型是分析纵向数据的一种有用方法。随机效应项允许对随着时间的推移与总体趋势的患者特定偏差进行建模。通过为模型中的所有随机效应指定联合分布来捕捉重复测量之间的相关性。通常,这种联合分布被假设为多变量正态分布。对于高斯结果,随机效应分布的错误指定通常影响不大。然而,当结果是离散的(例如计数或二元结果)时,使用广义线性混合模型(GLMM)来分析纵向趋势。关于GLMM对随机效应的错误指定有多强,意见分歧。先前的工作探讨了随机效应误判对单结果GLMM中模型参数偏差的影响。考虑到这些模型参数可能有偏差,我们研究了这是否会影响我们使用纵向判别分析将患者分为临床组的能力。我们还考虑了多个结果,当同时建模时,这些结果可以显著增加随机效应分布的维度。我们表明,当严重偏离正态时,更灵活的混合分布可以提供更好的分类精度。然而,在许多情况下,错误地假设单个多元正态分布对分类准确性几乎没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信