{"title":"Shrinkage estimation of the three-parameter logistic model","authors":"Michela Battauz, Ruggero Bellio","doi":"10.1111/bmsp.12241","DOIUrl":null,"url":null,"abstract":"<p>The three-parameter logistic model is widely used to model the responses to a proficiency test when the examinees can guess the correct response, as is the case for multiple-choice items. However, the weak identifiability of the parameters of the model results in large variability of the estimates and in convergence difficulties in the numerical maximization of the likelihood function. To overcome these issues, in this paper we explore various shrinkage estimation methods, following two main approaches. First, a ridge-type penalty on the guessing parameters is introduced in the likelihood function. The tuning parameter is then selected through various approaches: cross-validation, information criteria or using an empirical Bayes method. The second approach explored is based on the methodology developed to reduce the bias of the maximum likelihood estimator through an adjusted score equation. The performance of the methods is investigated through simulation studies and a real data example.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12241","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12241","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5
Abstract
The three-parameter logistic model is widely used to model the responses to a proficiency test when the examinees can guess the correct response, as is the case for multiple-choice items. However, the weak identifiability of the parameters of the model results in large variability of the estimates and in convergence difficulties in the numerical maximization of the likelihood function. To overcome these issues, in this paper we explore various shrinkage estimation methods, following two main approaches. First, a ridge-type penalty on the guessing parameters is introduced in the likelihood function. The tuning parameter is then selected through various approaches: cross-validation, information criteria or using an empirical Bayes method. The second approach explored is based on the methodology developed to reduce the bias of the maximum likelihood estimator through an adjusted score equation. The performance of the methods is investigated through simulation studies and a real data example.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.