{"title":"How Does HIV Persist Under Antiretroviral Therapy: A Review of the Evidence.","authors":"Gregory D Howgego","doi":"10.24875/AIDSRev.21000004","DOIUrl":null,"url":null,"abstract":"<p><p>HIV-1 is a retrovirus capable of establishing viral reservoirs that remain stable for extended periods under suppressive antiretroviral therapy (ART). Immune dysfunction and latency are well known to contribute to this longevity, but the respective roles of viral replication and latently infected (LI) cell proliferation under suppressive antiretroviral therapy (ART) have long been controversial. This historical review critically appraises the body of evidence regarding possible viral replication and proliferation of infected cells under ART. An ever-growing body of genetic and phylogenetic studies has demonstrated that HIV-infected cells are able to proliferate and contribute to the longevity of the reservoir in ART-treated patients. The role of ongoing replication remains controversial: it has been well established that HIV does not undergo evolution during ART or develop drug resistance, but some genetic, phylogenetic, and in vivo imaging studies have suggested that there may be ongoing replication despite this. The respective roles of viral replication and cellular proliferation in maintaining the LI reservoir remains an area of controversy. Elucidating these processes may allow us design interventions to reduce the size of the LI reservoir, increasing the length of treatment interruptions during which the virus will remain adequately suppressed, bringing us closer to a functional cure. Novel experimental techniques such as immuno-PET and digital droplet PCR (ddPCR) are increasingly being employed, and these, along with rapid particle sorting techniques currently in develop-ment, will be necessary to fully answer this question.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.24875/AIDSRev.21000004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
HIV-1 is a retrovirus capable of establishing viral reservoirs that remain stable for extended periods under suppressive antiretroviral therapy (ART). Immune dysfunction and latency are well known to contribute to this longevity, but the respective roles of viral replication and latently infected (LI) cell proliferation under suppressive antiretroviral therapy (ART) have long been controversial. This historical review critically appraises the body of evidence regarding possible viral replication and proliferation of infected cells under ART. An ever-growing body of genetic and phylogenetic studies has demonstrated that HIV-infected cells are able to proliferate and contribute to the longevity of the reservoir in ART-treated patients. The role of ongoing replication remains controversial: it has been well established that HIV does not undergo evolution during ART or develop drug resistance, but some genetic, phylogenetic, and in vivo imaging studies have suggested that there may be ongoing replication despite this. The respective roles of viral replication and cellular proliferation in maintaining the LI reservoir remains an area of controversy. Elucidating these processes may allow us design interventions to reduce the size of the LI reservoir, increasing the length of treatment interruptions during which the virus will remain adequately suppressed, bringing us closer to a functional cure. Novel experimental techniques such as immuno-PET and digital droplet PCR (ddPCR) are increasingly being employed, and these, along with rapid particle sorting techniques currently in develop-ment, will be necessary to fully answer this question.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.