Diffusion Tensor Imaging Can Discriminate the Primary Cell Type of Intracranial Metastases for Patients with Lung Cancer.

IF 2.5 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Magnetic Resonance in Medical Sciences Pub Date : 2022-07-01 Epub Date: 2021-03-04 DOI:10.2463/mrms.mp.2020-0183
Sabriye Sennur Bilgin, Mehmet Ali Gultekin, Ismail Yurtsever, Temel Fatih Yilmaz, Dilek Hacer Cesme, Melike Bilgin, Atakan Topcu, Mehmet Besiroglu, Haci Mehmet Turk, Alpay Alkan, Mehmet Bilgin
{"title":"Diffusion Tensor Imaging Can Discriminate the Primary Cell Type of Intracranial Metastases for Patients with Lung Cancer.","authors":"Sabriye Sennur Bilgin,&nbsp;Mehmet Ali Gultekin,&nbsp;Ismail Yurtsever,&nbsp;Temel Fatih Yilmaz,&nbsp;Dilek Hacer Cesme,&nbsp;Melike Bilgin,&nbsp;Atakan Topcu,&nbsp;Mehmet Besiroglu,&nbsp;Haci Mehmet Turk,&nbsp;Alpay Alkan,&nbsp;Mehmet Bilgin","doi":"10.2463/mrms.mp.2020-0183","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Histopathological differentiation of primary lung cancer is clinically important. We aimed to investigate whether diffusion tensor imaging (DTI) parameters of metastatic brain lesions could predict the histopathological types of the primary lung cancer.</p><p><strong>Methods: </strong>In total, 53 patients with 98 solid metastatic brain lesions of lung cancer were included. Lung tumors were subgrouped as non-small cell carcinoma (NSCLC) (n = 34) and small cell carcinoma (SCLC) (n = 19). Apparent diffusion coefficient (ADC) and Fractional anisotropy (FA) values were calculated from solid enhanced part of the brain metastases. The association between FA and ADC values and histopathological subtype of the primary tumor was investigated.</p><p><strong>Results: </strong>The mean ADC and FA values obtained from the solid part of the brain metastases of SCLC were significantly lower than the NSCLC metastases (P < 0.001 and P = 0.003, respectively). ROC curve analysis showed diagnostic performance for mean ADC values (AUC=0.889, P = < 0.001) and FA values (AUC = 0.677, P = 0.002). Cut-off value of > 0.909 × 10<sup>-3</sup> mm<sup>2</sup>/s for mean ADC (Sensitivity = 80.3, Specificity = 83.8, PPV = 89.1, NPV = 72.1) and > 0.139 for FA values (Sensitivity = 80.3, Specificity = 54.1, PPV = 74.2, NPV= 62.5) revealed in differentiating NSCLC from NSCLC.</p><p><strong>Conclusion: </strong>DTI parameters of brain metastasis can discriminate SCLC and NSCLC. ADC and FA values of metastatic brain lesions due to the lung cancer may be an important tool to differentiate histopathological subgroups. DTI may guide clinicians for the management of intracranial metastatic lesions of lung cancer.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":"21 3","pages":"425-431"},"PeriodicalIF":2.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/16/af/mrms-21-425.PMC9316134.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2463/mrms.mp.2020-0183","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose: Histopathological differentiation of primary lung cancer is clinically important. We aimed to investigate whether diffusion tensor imaging (DTI) parameters of metastatic brain lesions could predict the histopathological types of the primary lung cancer.

Methods: In total, 53 patients with 98 solid metastatic brain lesions of lung cancer were included. Lung tumors were subgrouped as non-small cell carcinoma (NSCLC) (n = 34) and small cell carcinoma (SCLC) (n = 19). Apparent diffusion coefficient (ADC) and Fractional anisotropy (FA) values were calculated from solid enhanced part of the brain metastases. The association between FA and ADC values and histopathological subtype of the primary tumor was investigated.

Results: The mean ADC and FA values obtained from the solid part of the brain metastases of SCLC were significantly lower than the NSCLC metastases (P < 0.001 and P = 0.003, respectively). ROC curve analysis showed diagnostic performance for mean ADC values (AUC=0.889, P = < 0.001) and FA values (AUC = 0.677, P = 0.002). Cut-off value of > 0.909 × 10-3 mm2/s for mean ADC (Sensitivity = 80.3, Specificity = 83.8, PPV = 89.1, NPV = 72.1) and > 0.139 for FA values (Sensitivity = 80.3, Specificity = 54.1, PPV = 74.2, NPV= 62.5) revealed in differentiating NSCLC from NSCLC.

Conclusion: DTI parameters of brain metastasis can discriminate SCLC and NSCLC. ADC and FA values of metastatic brain lesions due to the lung cancer may be an important tool to differentiate histopathological subgroups. DTI may guide clinicians for the management of intracranial metastatic lesions of lung cancer.

Abstract Image

Abstract Image

Abstract Image

弥散张量成像可鉴别肺癌颅内转移瘤原代细胞类型。
目的:原发性肺癌的组织病理学鉴别具有重要的临床意义。目的探讨脑转移灶弥散张量成像(diffusion tensor imaging, DTI)参数能否预测原发性肺癌的组织病理类型。方法:共纳入53例98例肺癌实性脑转移病灶。肺癌亚组分为非小细胞癌(NSCLC) (n = 34)和小细胞癌(SCLC) (n = 19)。计算脑转移瘤实体增强部分的表观扩散系数(ADC)和分数各向异性(FA)值。研究FA和ADC值与原发肿瘤组织病理学亚型之间的关系。结果:SCLC脑转移瘤实体部分ADC和FA均值显著低于NSCLC转移瘤(P < 0.001和P = 0.003)。ROC曲线分析显示平均ADC值(AUC=0.889, P = < 0.001)和FA值(AUC= 0.677, P = 0.002)具有诊断价值。平均ADC值临界值> 0.909 × 10-3 mm2/s(灵敏度= 80.3,特异性= 83.8,PPV = 89.1, NPV= 72.1), FA值临界值> 0.139(灵敏度= 80.3,特异性= 54.1,PPV = 74.2, NPV= 62.5)用于非小细胞肺癌与非小细胞肺癌的鉴别。结论:脑转移DTI参数可区分SCLC和NSCLC。肺癌引起的脑转移病变的ADC和FA值可能是区分组织病理亚群的重要工具。DTI可以指导临床医生对肺癌颅内转移性病变的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetic Resonance in Medical Sciences
Magnetic Resonance in Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
5.80
自引率
20.00%
发文量
71
审稿时长
>12 weeks
期刊介绍: Magnetic Resonance in Medical Sciences (MRMS or Magn Reson Med Sci) is an international journal pursuing the publication of original articles contributing to the progress of magnetic resonance in the field of biomedical sciences including technical developments and clinical applications. MRMS is an official journal of the Japanese Society for Magnetic Resonance in Medicine (JSMRM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信