Mingzhe Liu, Feixiang Zhao, Xin Jiang, Hong Zhang, Helen Zhou
{"title":"Parallel Binary Image Cryptosystem Via Spiking Neural Networks Variants.","authors":"Mingzhe Liu, Feixiang Zhao, Xin Jiang, Hong Zhang, Helen Zhou","doi":"10.1142/S0129065721500143","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the inefficiency of multiple binary images encryption, a parallel binary image encryption framework based on the typical variants of spiking neural networks, spiking neural P (SNP) systems is proposed in this paper. More specifically, the two basic units in the proposed image cryptosystem, the permutation unit and the diffusion unit, are designed through SNP systems with multiple channels and polarizations (SNP-MCP systems), and SNP systems with astrocyte-like control (SNP-ALC systems), respectively. Different from the serial computing of the traditional image permutation/diffusion unit, SNP-MCP-based permutation/SNP-ALC-based diffusion unit can realize parallel computing through the parallel use of rules inside the neurons. Theoretical analysis results confirm the high efficiency of the binary image proposed cryptosystem. Security analysis experiments demonstrate the security of the proposed cryptosystem.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 8","pages":"2150014"},"PeriodicalIF":6.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065721500143","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Due to the inefficiency of multiple binary images encryption, a parallel binary image encryption framework based on the typical variants of spiking neural networks, spiking neural P (SNP) systems is proposed in this paper. More specifically, the two basic units in the proposed image cryptosystem, the permutation unit and the diffusion unit, are designed through SNP systems with multiple channels and polarizations (SNP-MCP systems), and SNP systems with astrocyte-like control (SNP-ALC systems), respectively. Different from the serial computing of the traditional image permutation/diffusion unit, SNP-MCP-based permutation/SNP-ALC-based diffusion unit can realize parallel computing through the parallel use of rules inside the neurons. Theoretical analysis results confirm the high efficiency of the binary image proposed cryptosystem. Security analysis experiments demonstrate the security of the proposed cryptosystem.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.