{"title":"Estimating Fisher discriminant error in a linear integrator model of neural population activity.","authors":"Matias Calderini, Jean-Philippe Thivierge","doi":"10.1186/s13408-021-00104-4","DOIUrl":null,"url":null,"abstract":"<p><p>Decoding approaches provide a useful means of estimating the information contained in neuronal circuits. In this work, we analyze the expected classification error of a decoder based on Fisher linear discriminant analysis. We provide expressions that relate decoding error to the specific parameters of a population model that performs linear integration of sensory input. Results show conditions that lead to beneficial and detrimental effects of noise correlation on decoding. Further, the proposed framework sheds light on the contribution of neuronal noise, highlighting cases where, counter-intuitively, increased noise may lead to improved decoding performance. Finally, we examined the impact of dynamical parameters, including neuronal leak and integration time constant, on decoding. Overall, this work presents a fruitful approach to the study of decoding using a comprehensive theoretical framework that merges dynamical parameters with estimates of readout error.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-021-00104-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Decoding approaches provide a useful means of estimating the information contained in neuronal circuits. In this work, we analyze the expected classification error of a decoder based on Fisher linear discriminant analysis. We provide expressions that relate decoding error to the specific parameters of a population model that performs linear integration of sensory input. Results show conditions that lead to beneficial and detrimental effects of noise correlation on decoding. Further, the proposed framework sheds light on the contribution of neuronal noise, highlighting cases where, counter-intuitively, increased noise may lead to improved decoding performance. Finally, we examined the impact of dynamical parameters, including neuronal leak and integration time constant, on decoding. Overall, this work presents a fruitful approach to the study of decoding using a comprehensive theoretical framework that merges dynamical parameters with estimates of readout error.
期刊介绍:
The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions.
It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged.
Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.