Understanding and Controlling Intersystem Crossing in Molecules.

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Christel M Marian
{"title":"Understanding and Controlling Intersystem Crossing in Molecules.","authors":"Christel M Marian","doi":"10.1146/annurev-physchem-061020-053433","DOIUrl":null,"url":null,"abstract":"<p><p>This review article focuses on the understanding of intersystem crossing (ISC) in molecules. It addresses readers who are interested in the phenomenon of intercombination transitions between states of different electron spin multiplicities but are not familiar with relativistic quantum chemistry. Among the spin-dependent interaction terms that enable a crossover between states of different electron spin multiplicities, spin-orbit coupling (SOC) is by far the most important. If SOC is small or vanishes by symmetry, ISC can proceed by electronic spin-spin coupling (SSC) or hyperfine interaction (HFI). Although this review discusses SSC- and HFI-based ISC, the emphasis is on SOC-based ISC. In addition to laying the theoretical foundations for the understanding of ISC, the review elaborates on the qualitative rules for estimating transition probabilities. Research on the mechanisms of ISC has experienced a major revival in recent years owing to its importance in organic light-emitting diodes (OLEDs). Exemplified by challenging case studies, chemical substitution and solvent environment effects are discussed with the aim of helping the reader to understand and thereby get a handle on the factors that steer the efficiency of ISC.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-061020-053433","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 57

Abstract

This review article focuses on the understanding of intersystem crossing (ISC) in molecules. It addresses readers who are interested in the phenomenon of intercombination transitions between states of different electron spin multiplicities but are not familiar with relativistic quantum chemistry. Among the spin-dependent interaction terms that enable a crossover between states of different electron spin multiplicities, spin-orbit coupling (SOC) is by far the most important. If SOC is small or vanishes by symmetry, ISC can proceed by electronic spin-spin coupling (SSC) or hyperfine interaction (HFI). Although this review discusses SSC- and HFI-based ISC, the emphasis is on SOC-based ISC. In addition to laying the theoretical foundations for the understanding of ISC, the review elaborates on the qualitative rules for estimating transition probabilities. Research on the mechanisms of ISC has experienced a major revival in recent years owing to its importance in organic light-emitting diodes (OLEDs). Exemplified by challenging case studies, chemical substitution and solvent environment effects are discussed with the aim of helping the reader to understand and thereby get a handle on the factors that steer the efficiency of ISC.

理解和控制分子间的系统交叉。
本文综述了分子间系统交叉(ISC)的研究进展。它解决了读者谁是对不同的电子自旋多重态之间的相互组合跃迁现象感兴趣,但不熟悉相对论量子化学。在能够实现不同电子自旋多重态间交叉的自旋相关相互作用项中,自旋轨道耦合(SOC)是迄今为止最重要的。如果SOC很小或由于对称性而消失,则ISC可以通过电子自旋-自旋耦合(SSC)或超精细相互作用(HFI)进行。虽然本文讨论了基于SSC和hfi的ISC,但重点是基于soc的ISC。除了为理解ISC奠定理论基础外,本文还阐述了估计转移概率的定性规则。由于ISC在有机发光二极管(oled)中的重要性,近年来对其机理的研究经历了一次重大的复苏。以具有挑战性的案例研究为例,讨论了化学替代和溶剂环境影响,目的是帮助读者理解并从而掌握引导ISC效率的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信