Tamar Schlick, Stephanie Portillo-Ledesma, Christopher G Myers, Lauren Beljak, Justin Chen, Sami Dakhel, Daniel Darling, Sayak Ghosh, Joseph Hall, Mikaeel Jan, Emily Liang, Sera Saju, Mackenzie Vohr, Chris Wu, Yifan Xu, Eva Xue
{"title":"Biomolecular Modeling and Simulation: A Prospering Multidisciplinary Field.","authors":"Tamar Schlick, Stephanie Portillo-Ledesma, Christopher G Myers, Lauren Beljak, Justin Chen, Sami Dakhel, Daniel Darling, Sayak Ghosh, Joseph Hall, Mikaeel Jan, Emily Liang, Sera Saju, Mackenzie Vohr, Chris Wu, Yifan Xu, Eva Xue","doi":"10.1146/annurev-biophys-091720-102019","DOIUrl":null,"url":null,"abstract":"<p><p>We reassess progress in the field of biomolecular modeling and simulation, following up on our perspective published in 2011. By reviewing metrics for the field's productivity and providing examples of success, we underscore the productive phase of the field, whose short-term expectations were overestimated and long-term effects underestimated. Such successes include prediction of structures and mechanisms; generation of new insights into biomolecular activity; and thriving collaborations between modeling and experimentation, including experiments driven by modeling. We also discuss the impact of field exercises and web games on the field's progress. Overall, we note tremendous success by the biomolecular modeling community in utilization of computer power; improvement in force fields; and development and application of new algorithms, notably machine learning and artificial intelligence. The combined advances are enhancing the accuracy andscope of modeling and simulation, establishing an exemplary discipline where experiment and theory or simulations are full partners.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"50 ","pages":"267-301"},"PeriodicalIF":10.4000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105287/pdf/nihms-1683765.pdf","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-091720-102019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 24
Abstract
We reassess progress in the field of biomolecular modeling and simulation, following up on our perspective published in 2011. By reviewing metrics for the field's productivity and providing examples of success, we underscore the productive phase of the field, whose short-term expectations were overestimated and long-term effects underestimated. Such successes include prediction of structures and mechanisms; generation of new insights into biomolecular activity; and thriving collaborations between modeling and experimentation, including experiments driven by modeling. We also discuss the impact of field exercises and web games on the field's progress. Overall, we note tremendous success by the biomolecular modeling community in utilization of computer power; improvement in force fields; and development and application of new algorithms, notably machine learning and artificial intelligence. The combined advances are enhancing the accuracy andscope of modeling and simulation, establishing an exemplary discipline where experiment and theory or simulations are full partners.
期刊介绍:
The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.