Increased lipoxygenase and decreased cytochrome P450s metabolites correlated with the incidence of diabetic nephropathy: Potential role of eicosanoids from metabolomics in type 2 diabetic patients.
Liyuan Peng, Bei Sun, Yajin Liu, Jing Huang, Guangzhi Chen, Xu Zhang, Chen Chen, Daowen Wang, Gang Wang
{"title":"Increased lipoxygenase and decreased cytochrome P450s metabolites correlated with the incidence of diabetic nephropathy: Potential role of eicosanoids from metabolomics in type 2 diabetic patients.","authors":"Liyuan Peng, Bei Sun, Yajin Liu, Jing Huang, Guangzhi Chen, Xu Zhang, Chen Chen, Daowen Wang, Gang Wang","doi":"10.1111/1440-1681.13471","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is the major cause of chronic kidney disease and end-stage renal disease. Previous studies have demonstrated that long-chain omega-3 polyunsaturated fatty acids (PUFAs) might have therapeutic potential in reducing proteinuria in DN. However, the local level of eicosanoids derived from PUFAs in the plasma of DN patients remains unclear. This work aims to study the eicosanoid profile difference in plasma of DN patients and type 2 diabetes (T2D) without DN. A total of 27 T2D patients with similar diabetic duration were recruited and divided into T2D+DN group and T2D+NDN (non-DN) group based on urinary albumin excretion (UAE) detection. Using LC-MS/MS-based metabolomics, DN patients showed increased level of lipoxygenase (LOX) metabolites (5-HETE and LTB4) and decreased levels of eicosanoids derived according to the cytochrome P450s (CYP450) metabolic pathway (5,6-DHET; 14,15-DHET and 9,10-diHOME). Receiver operating characteristics and logistic regression analysis revealed increased level LOX metabolites and decreased level of CYP450 metabolites were significantly correlated with the incidence of DN in T2D patients. LOX and CYP450 metabolites correlated with DN incidence in T2D patients, which might be treatment targets for DN in T2D patients.</p>","PeriodicalId":10259,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"48 5","pages":"679-685"},"PeriodicalIF":2.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1440-1681.13471","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1440-1681.13471","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 3
Abstract
Diabetic nephropathy (DN) is the major cause of chronic kidney disease and end-stage renal disease. Previous studies have demonstrated that long-chain omega-3 polyunsaturated fatty acids (PUFAs) might have therapeutic potential in reducing proteinuria in DN. However, the local level of eicosanoids derived from PUFAs in the plasma of DN patients remains unclear. This work aims to study the eicosanoid profile difference in plasma of DN patients and type 2 diabetes (T2D) without DN. A total of 27 T2D patients with similar diabetic duration were recruited and divided into T2D+DN group and T2D+NDN (non-DN) group based on urinary albumin excretion (UAE) detection. Using LC-MS/MS-based metabolomics, DN patients showed increased level of lipoxygenase (LOX) metabolites (5-HETE and LTB4) and decreased levels of eicosanoids derived according to the cytochrome P450s (CYP450) metabolic pathway (5,6-DHET; 14,15-DHET and 9,10-diHOME). Receiver operating characteristics and logistic regression analysis revealed increased level LOX metabolites and decreased level of CYP450 metabolites were significantly correlated with the incidence of DN in T2D patients. LOX and CYP450 metabolites correlated with DN incidence in T2D patients, which might be treatment targets for DN in T2D patients.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.