{"title":"M-current induced Bogdanov-Takens bifurcation and switching of neuron excitability class.","authors":"Isam Al-Darabsah, Sue Ann Campbell","doi":"10.1186/s13408-021-00103-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we consider a general conductance-based neuron model with the inclusion of the acetycholine sensitive, M-current. We study bifurcations in the parameter space consisting of the applied current [Formula: see text], the maximal conductance of the M-current [Formula: see text] and the conductance of the leak current [Formula: see text]. We give precise conditions for the model that ensure the existence of a Bogdanov-Takens (BT) point and show that such a point can occur by varying [Formula: see text] and [Formula: see text]. We discuss the case when the BT point becomes a Bogdanov-Takens-cusp (BTC) point and show that such a point can occur in the three-dimensional parameter space. The results of the bifurcation analysis are applied to different neuronal models and are verified and supplemented by numerical bifurcation diagrams generated using the package MATCONT. We conclude that there is a transition in the neuronal excitability type organised by the BT point and the neuron switches from Class-I to Class-II as conductance of the M-current increases.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-021-00103-5","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-021-00103-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 3
Abstract
In this work, we consider a general conductance-based neuron model with the inclusion of the acetycholine sensitive, M-current. We study bifurcations in the parameter space consisting of the applied current [Formula: see text], the maximal conductance of the M-current [Formula: see text] and the conductance of the leak current [Formula: see text]. We give precise conditions for the model that ensure the existence of a Bogdanov-Takens (BT) point and show that such a point can occur by varying [Formula: see text] and [Formula: see text]. We discuss the case when the BT point becomes a Bogdanov-Takens-cusp (BTC) point and show that such a point can occur in the three-dimensional parameter space. The results of the bifurcation analysis are applied to different neuronal models and are verified and supplemented by numerical bifurcation diagrams generated using the package MATCONT. We conclude that there is a transition in the neuronal excitability type organised by the BT point and the neuron switches from Class-I to Class-II as conductance of the M-current increases.
期刊介绍:
The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions.
It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged.
Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.