Ioannis G Lempesis, Gijs H Goossens, Konstantinos N Manolopoulos
{"title":"Measurement of human abdominal and femoral intravascular adipose tissue blood flow using percutaneous Doppler ultrasound.","authors":"Ioannis G Lempesis, Gijs H Goossens, Konstantinos N Manolopoulos","doi":"10.1080/21623945.2021.1888471","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose tissue blood flow (ATBF) is an important determinant of adipose tissue (AT) function. <sup>133</sup>Xenon wash-out technique is considered the gold-standard for human ATBF measurements. However, decreasing <sup>133</sup>Xenon clinical use and costly production and preservation, make alternative (non-invasive) methods necessary. Here, we explored percutaneous Doppler ultrasound as a proxy method to quantify intravascular subcutaneous abdominal and femoral ATBF in humans (<i>n</i>= 17). Both fasting ATBF and the postprandial increase in ATBF were significantly higher in abdominal compared to femoral AT. Although anatomical variations in vein location and depot thickness may impact feasibility, we demonstrate that Doppler ultrasound detects the expected depot-differences and postprandial increase in ATBF in healthy individuals. This method warrants further investigation in other populations and metabolic conditions.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"10 1","pages":"119-123"},"PeriodicalIF":3.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21623945.2021.1888471","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2021.1888471","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 7
Abstract
Adipose tissue blood flow (ATBF) is an important determinant of adipose tissue (AT) function. 133Xenon wash-out technique is considered the gold-standard for human ATBF measurements. However, decreasing 133Xenon clinical use and costly production and preservation, make alternative (non-invasive) methods necessary. Here, we explored percutaneous Doppler ultrasound as a proxy method to quantify intravascular subcutaneous abdominal and femoral ATBF in humans (n= 17). Both fasting ATBF and the postprandial increase in ATBF were significantly higher in abdominal compared to femoral AT. Although anatomical variations in vein location and depot thickness may impact feasibility, we demonstrate that Doppler ultrasound detects the expected depot-differences and postprandial increase in ATBF in healthy individuals. This method warrants further investigation in other populations and metabolic conditions.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.