{"title":"Fast Electrical Characterization with Low Hardware Requirement.","authors":"Uwe Pliquett","doi":"10.2478/joeb-2020-0001","DOIUrl":null,"url":null,"abstract":"Electrical impedance spectroscopy can be performed using a great variety of methods and instrumentation. The most popular method, sweeping though a frequency range and measuring the impedance, either magnitude and phase or real and imaginary part at each desired frequency, offers high precision due to selective amplifiers and high dynamic range with respect to impedance magnitude. Highly sophisticated laboratory equipment guarantees robust measurement while software packages assist the interpretation of the measurement results. Although automated impedance analyzers are reasonably fast, the physical limitation of signal engagement at each measurement frequency always applies. Traditionally, the majority of the impedance analyzers are bulky and expensive and thus not suited for process instrumentation. During the last two decades, more and more economic instruments with small dimensions and low energy constraints conquer the market. Although the majority of these devices work in the frequency domain, time domain based approaches are increasingly offered.","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":" ","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ae/85/joeb-11-001.PMC7531099.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2020-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical impedance spectroscopy can be performed using a great variety of methods and instrumentation. The most popular method, sweeping though a frequency range and measuring the impedance, either magnitude and phase or real and imaginary part at each desired frequency, offers high precision due to selective amplifiers and high dynamic range with respect to impedance magnitude. Highly sophisticated laboratory equipment guarantees robust measurement while software packages assist the interpretation of the measurement results. Although automated impedance analyzers are reasonably fast, the physical limitation of signal engagement at each measurement frequency always applies. Traditionally, the majority of the impedance analyzers are bulky and expensive and thus not suited for process instrumentation. During the last two decades, more and more economic instruments with small dimensions and low energy constraints conquer the market. Although the majority of these devices work in the frequency domain, time domain based approaches are increasingly offered.