Machine Learning for Stem Cell Differentiation and Proliferation Classification on Electrical Impedance Spectroscopy.

Q3 Biochemistry, Genetics and Molecular Biology
Journal of Electrical Bioimpedance Pub Date : 2019-12-31 eCollection Date: 2019-01-01 DOI:10.2478/joeb-2019-0018
André B Cunha, Jie Hou, Christin Schuelke
{"title":"Machine Learning for Stem Cell Differentiation and Proliferation Classification on Electrical Impedance Spectroscopy.","authors":"André B Cunha, Jie Hou, Christin Schuelke","doi":"10.2478/joeb-2019-0018","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical impedance spectroscopy (EIS) measurements on cells is a proven method to assess stem cell proliferation and differentiation. Cell regenerative medicine (CRM) is an emerging field where the need to develop and deploy stem cell assessment techniques is paramount as experimental treatments reach pre-clinical and clinical stages. However, EIS measurements on cells is a method requiring extensive post-processing and analysis. As a contribution to address this concern, we developed three machine learning models for three different stem cell lines able to classify the measured data as proliferation or differentiation laying the stone for future studies on using machine learning to profile EIS measurements on stem cells spectra.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"10 1","pages":"124-132"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/88/94/joeb-10-124.PMC7851974.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2019-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6

Abstract

Electrical impedance spectroscopy (EIS) measurements on cells is a proven method to assess stem cell proliferation and differentiation. Cell regenerative medicine (CRM) is an emerging field where the need to develop and deploy stem cell assessment techniques is paramount as experimental treatments reach pre-clinical and clinical stages. However, EIS measurements on cells is a method requiring extensive post-processing and analysis. As a contribution to address this concern, we developed three machine learning models for three different stem cell lines able to classify the measured data as proliferation or differentiation laying the stone for future studies on using machine learning to profile EIS measurements on stem cells spectra.

Abstract Image

Abstract Image

Abstract Image

基于电阻抗谱的干细胞分化和增殖分类的机器学习。
电阻抗谱(EIS)测量细胞是一种成熟的方法来评估干细胞的增殖和分化。细胞再生医学(CRM)是一个新兴领域,随着实验治疗进入临床前和临床阶段,开发和部署干细胞评估技术是至关重要的。然而,对细胞进行EIS测量是一种需要大量后处理和分析的方法。为了解决这一问题,我们为三种不同的干细胞系开发了三种机器学习模型,能够将测量的数据分类为增殖或分化,为未来使用机器学习对干细胞光谱进行EIS测量的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信