{"title":"Entorhinal deafferentation induces upregulation of SPARC in the mouse hippocampus","authors":"Xin Liu, Guoxin Ying, Wenyuan Wang, Jinghui Dong, Yan Wang, Zimei Ni, Changfu Zhou","doi":"10.1016/j.molbrainres.2005.08.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>SPARC<span> is a matricellular protein that modulates cell–cell and cell–matrix interactions by virtue of its antiproliferative and counteradhesive properties. Here, we report the denervation-induced upregulation of SPARC mRNA and protein in the mouse hippocampus following transections of the entorhinal afferents. </span></span>Northern blot<span> analysis showed that SPARC mRNA was upregulated in a transient manner in the deafferented mouse hippocampus. In situ hybridization and </span></span>immunohistochemistry<span> confirmed the temporal upregulation of both SPARC mRNA and protein specifically in the denervated areas, which initiated at 7 days postlesion, reached the maximum at 15 as well as 30 days postlesion, and subsided towards normal levels by 60 days postlesion. Double labeling by either a combination of in situ hybridization for SPARC mRNA with immunohistochemistry for glial fibrillary acidic protein<span> or double immunofluorescence staining for both proteins in the hippocampus revealed that SPARC-expressing cells are reactive astrocytes. In respect to the spatiotemporal alterations of SPARC expression in the denervated hippocampus, we suggest that SPARC may be involved in modulation of the denervation-induced plasticity processes such as </span></span></span>glial cell<span> proliferation, axonal sprouting and subsequent synaptogenesis in the hippocampus following entorhinal deafferentation.</span></p></div>","PeriodicalId":100932,"journal":{"name":"Molecular Brain Research","volume":"141 1","pages":"Pages 58-65"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molbrainres.2005.08.003","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169328X05003207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
SPARC is a matricellular protein that modulates cell–cell and cell–matrix interactions by virtue of its antiproliferative and counteradhesive properties. Here, we report the denervation-induced upregulation of SPARC mRNA and protein in the mouse hippocampus following transections of the entorhinal afferents. Northern blot analysis showed that SPARC mRNA was upregulated in a transient manner in the deafferented mouse hippocampus. In situ hybridization and immunohistochemistry confirmed the temporal upregulation of both SPARC mRNA and protein specifically in the denervated areas, which initiated at 7 days postlesion, reached the maximum at 15 as well as 30 days postlesion, and subsided towards normal levels by 60 days postlesion. Double labeling by either a combination of in situ hybridization for SPARC mRNA with immunohistochemistry for glial fibrillary acidic protein or double immunofluorescence staining for both proteins in the hippocampus revealed that SPARC-expressing cells are reactive astrocytes. In respect to the spatiotemporal alterations of SPARC expression in the denervated hippocampus, we suggest that SPARC may be involved in modulation of the denervation-induced plasticity processes such as glial cell proliferation, axonal sprouting and subsequent synaptogenesis in the hippocampus following entorhinal deafferentation.