Yifei Wang , Holly Y.H. Kwok , Wending Pan , Yingguang Zhang , Huimin Zhang , Xu Lu , Dennis Y.C. Leung
{"title":"Printing Al-air batteries on paper for powering disposable printed electronics","authors":"Yifei Wang , Holly Y.H. Kwok , Wending Pan , Yingguang Zhang , Huimin Zhang , Xu Lu , Dennis Y.C. Leung","doi":"10.1016/j.jpowsour.2019.227685","DOIUrl":null,"url":null,"abstract":"<div><p>A printable Al-air battery is successfully developed for the first time by printing the Al ink and the oxygen reduction ink onto a cellulose paper. Currently, the printable Al-air battery can provide an open-circuit voltage of 1 V, a peak power density of 6.6 mW cm<sup>−2</sup> and a maximum current density of 40 mA cm<sup>−2</sup> when using salt water as the electrolyte. With 6 mg Al, the battery can discharge at 1 mA cm<sup>−2</sup> for almost 6 h, leading to a high specific capacity of 951 mA h g<sup>−1</sup>. It is found that a moderate concentration of the polymer binder and a high concentration of the carbon support are of great importance to the ink functionality, while the hot-press treatment can dramatically improve the electrode performance and robustness. Finally, screen-printed battery prototypes with a specific electrode pattern are demonstrated for powering a small electric fan and a light-emitting diode. The present printable Al-air battery is a novel type of primary power source with low fabrication cost, high energy density and great environmental friendliness, which is especially suitable for powering various disposable printed electronics in the future.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jpowsour.2019.227685","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775319316787","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 25
Abstract
A printable Al-air battery is successfully developed for the first time by printing the Al ink and the oxygen reduction ink onto a cellulose paper. Currently, the printable Al-air battery can provide an open-circuit voltage of 1 V, a peak power density of 6.6 mW cm−2 and a maximum current density of 40 mA cm−2 when using salt water as the electrolyte. With 6 mg Al, the battery can discharge at 1 mA cm−2 for almost 6 h, leading to a high specific capacity of 951 mA h g−1. It is found that a moderate concentration of the polymer binder and a high concentration of the carbon support are of great importance to the ink functionality, while the hot-press treatment can dramatically improve the electrode performance and robustness. Finally, screen-printed battery prototypes with a specific electrode pattern are demonstrated for powering a small electric fan and a light-emitting diode. The present printable Al-air battery is a novel type of primary power source with low fabrication cost, high energy density and great environmental friendliness, which is especially suitable for powering various disposable printed electronics in the future.
将铝墨水和氧还原墨水打印在纤维素纸上,首次成功研制出可打印的铝空气电池。目前,使用盐水作为电解液时,可打印的铝空气电池可提供1 V的开路电压,6.6 mW cm - 2的峰值功率密度和40 mA cm - 2的最大电流密度。当使用6mg铝时,电池可以在1ma cm - 2下放电近6小时,从而获得951 mA h g - 1的高比容量。研究发现,中等浓度的聚合物粘结剂和高浓度的碳载体对油墨的功能有重要影响,而热压处理可以显著提高电极的性能和鲁棒性。最后,展示了具有特定电极图案的丝网印刷电池原型,用于为小型电风扇和发光二极管供电。目前的可印刷铝空气电池是一种新型的一次电源,具有制造成本低、能量密度高、环境友好等特点,特别适用于未来各种一次性印刷电子产品的供电。
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems