{"title":"Disruption of immediate memory and brain processes: an auditory ERP protocol","authors":"Tom Campbell , István Winkler , Teija Kujala","doi":"10.1016/j.brainresprot.2004.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>An event-related potential (ERP) protocol is described that can be used to investigate those sound-evoked neural processes that may be implicated in disrupting immediate memory. Conventional electroencephalogram (EEG) is recorded during the performance of a task that involves ignoring irrelevant sounds while trying to hold in memory lists of numbers. Specific bioelectric measures are made to prevent the contamination of recordings by the movements of articulators. An approach is also outlined which controls the timing of ERP components to sounds with different envelopes. Using this approach, it has been shown that the neural processes involved in the elicitation of the auditory N1 ERP response may be involved in the disruption of memory for serial order produced by irrelevant sound.</p></div>","PeriodicalId":79477,"journal":{"name":"Brain research. Brain research protocols","volume":"14 2","pages":"Pages 77-86"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresprot.2004.11.001","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain research. Brain research protocols","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385299X04000911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
An event-related potential (ERP) protocol is described that can be used to investigate those sound-evoked neural processes that may be implicated in disrupting immediate memory. Conventional electroencephalogram (EEG) is recorded during the performance of a task that involves ignoring irrelevant sounds while trying to hold in memory lists of numbers. Specific bioelectric measures are made to prevent the contamination of recordings by the movements of articulators. An approach is also outlined which controls the timing of ERP components to sounds with different envelopes. Using this approach, it has been shown that the neural processes involved in the elicitation of the auditory N1 ERP response may be involved in the disruption of memory for serial order produced by irrelevant sound.