Real time computation of in vivo drug levels during drug self-administration experiments

Vladimir L. Tsibulsky , Andrew B. Norman
{"title":"Real time computation of in vivo drug levels during drug self-administration experiments","authors":"Vladimir L. Tsibulsky ,&nbsp;Andrew B. Norman","doi":"10.1016/j.brainresprot.2005.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>A growing body of evidence suggests that the drug concentration in the effect compartment of the body is the major factor regulating self-administration behavior. A novel computer-based protocol was developed to facilitate studies on mechanisms of drug addiction by determining correlations between drug levels and behavior during multiple drug injections and infusions. The core of the system is a user's program written in Medstate Notation language® (Med-Associates, Inc.), which runs the self-administration session (with MED-PC® software and hardware, Med-Associates, Inc.) and calculates the levels of infused and/or injected drugs in real time during the session. From the comparison of classical exponential and simple linear models of first-order kinetics, it is concluded that exponential solutions for the appropriate differential equations may be replaced with linear equations if the cycle of computation is much shorter than the shortest half-life for the drug. The choice between particular computation equations depends on assumptions about the pharmacokinetics of the particular drug: (i) one-, two- or three-compartment model, (ii) zero-, first- or second-order process of elimination, (iii) the constants of distribution and elimination half-lives of the drug are known or can be reasonably assumed, (iv) dependence of the constants on the drug level, and (v) temporal stability of all parameters during the session. This method of drug level computation can be employed not only for self-administration but also for other behavioral paradigms to advance pharmacokinetic/pharmacodynamic modeling.</p></div>","PeriodicalId":79477,"journal":{"name":"Brain research. Brain research protocols","volume":"15 1","pages":"Pages 38-45"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresprot.2005.03.003","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain research. Brain research protocols","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385299X05000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

A growing body of evidence suggests that the drug concentration in the effect compartment of the body is the major factor regulating self-administration behavior. A novel computer-based protocol was developed to facilitate studies on mechanisms of drug addiction by determining correlations between drug levels and behavior during multiple drug injections and infusions. The core of the system is a user's program written in Medstate Notation language® (Med-Associates, Inc.), which runs the self-administration session (with MED-PC® software and hardware, Med-Associates, Inc.) and calculates the levels of infused and/or injected drugs in real time during the session. From the comparison of classical exponential and simple linear models of first-order kinetics, it is concluded that exponential solutions for the appropriate differential equations may be replaced with linear equations if the cycle of computation is much shorter than the shortest half-life for the drug. The choice between particular computation equations depends on assumptions about the pharmacokinetics of the particular drug: (i) one-, two- or three-compartment model, (ii) zero-, first- or second-order process of elimination, (iii) the constants of distribution and elimination half-lives of the drug are known or can be reasonably assumed, (iv) dependence of the constants on the drug level, and (v) temporal stability of all parameters during the session. This method of drug level computation can be employed not only for self-administration but also for other behavioral paradigms to advance pharmacokinetic/pharmacodynamic modeling.

自我给药实验中体内药物水平的实时计算
越来越多的证据表明,体内效应室的药物浓度是调节自我给药行为的主要因素。一种新的基于计算机的方案,通过确定多种药物注射和输液过程中药物水平与行为之间的相关性,来促进药物成瘾机制的研究。该系统的核心是用Medstate Notation语言®(Med-Associates, Inc.)编写的用户程序,该程序运行自我给药会话(使用MED-PC®软件和硬件,Med-Associates, Inc.),并在会话期间实时计算输注和/或注射药物的水平。通过对一阶动力学经典指数模型和简单线性模型的比较,得出了当计算周期比药物的最短半衰期短得多时,适当微分方程的指数解可以用线性方程代替。在特定计算方程之间的选择取决于对特定药物的药代动力学的假设:(i)一室、二室或三室模型,(ii)零、一阶或二阶消除过程,(iii)药物的分布常数和消除半衰期是已知的或可以合理假设的,(iv)常数对药物水平的依赖,以及(v)所有参数在会议期间的时间稳定性。这种药物水平计算方法不仅可以用于自我给药,还可以用于其他行为范式,以推进药代动力学/药效学建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信