M A Erario, S Gonzales, S Romay, F X Eizayaga, J L Castro, A Lemberg, M L Tomaro
{"title":"Role of heme oxygenase/carbon monoxide pathway on the vascular response to noradrenaline in portal hypertensive rats.","authors":"M A Erario, S Gonzales, S Romay, F X Eizayaga, J L Castro, A Lemberg, M L Tomaro","doi":"10.1111/j.1440-1681.2005.04171.x","DOIUrl":null,"url":null,"abstract":"<p><p>1. Portal hypertension (PH), a major syndrome in cirrhosis, producing hyperdynamic splanchnic circulation and hyperaemia. In order to elucidate the contribution of heme oxygenase to the vascular hyporeactivity, we assessed the activity of heme oxygenase-1 (HO-1), measured the in vivo pressure response to noradrenaline (NA) and investigated the effects of blocking the carbon monoxide (CO) and nitric oxide (NO) pathways in a prehepatic model of PH in rats. 2. Portal hypertension was induced by partial portal vein ligation (PPVL). Noradrenaline was injected intravenously. Liver, spleen and mesentery homogenates were prepared for measurement of HO-1 activity and expression. Four groups of rats were used: (i) a sham group; (ii) a PPVL group; (iii) a sham group pretreated with Zn-protoporphyrin IX (ZnPPIX); and (iv) a PPVL group pretreated with ZnPPIX. Each group was studied before and after treatment with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). 3. For basal pressures and the pressure response to NA, inhibition of CO and NO pathways by ZnPPIX and L-NAME, respectively, produced an increase in mean arterial pressure (MAP) in sham-operated and in PH rats. Similarly, when both inhibitors were used together in either sham or PPVL rats, a greater increase in MAP was observed. 4. These results, together with the increased HO-1 activity and expression only in the PH group, have led us to suggest that the heme oxygenase/CO pathway is involved in the vascular response to NA in PH rats.</p>","PeriodicalId":10259,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"32 3","pages":"196-201"},"PeriodicalIF":2.4000,"publicationDate":"2005-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1440-1681.2005.04171.x","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1440-1681.2005.04171.x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 8
Abstract
1. Portal hypertension (PH), a major syndrome in cirrhosis, producing hyperdynamic splanchnic circulation and hyperaemia. In order to elucidate the contribution of heme oxygenase to the vascular hyporeactivity, we assessed the activity of heme oxygenase-1 (HO-1), measured the in vivo pressure response to noradrenaline (NA) and investigated the effects of blocking the carbon monoxide (CO) and nitric oxide (NO) pathways in a prehepatic model of PH in rats. 2. Portal hypertension was induced by partial portal vein ligation (PPVL). Noradrenaline was injected intravenously. Liver, spleen and mesentery homogenates were prepared for measurement of HO-1 activity and expression. Four groups of rats were used: (i) a sham group; (ii) a PPVL group; (iii) a sham group pretreated with Zn-protoporphyrin IX (ZnPPIX); and (iv) a PPVL group pretreated with ZnPPIX. Each group was studied before and after treatment with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). 3. For basal pressures and the pressure response to NA, inhibition of CO and NO pathways by ZnPPIX and L-NAME, respectively, produced an increase in mean arterial pressure (MAP) in sham-operated and in PH rats. Similarly, when both inhibitors were used together in either sham or PPVL rats, a greater increase in MAP was observed. 4. These results, together with the increased HO-1 activity and expression only in the PH group, have led us to suggest that the heme oxygenase/CO pathway is involved in the vascular response to NA in PH rats.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.