{"title":"Solar panel energy production forecasting by machine learning methods and contribution of lifespan to sustainability","authors":"H. Yılmaz, M. Şahin","doi":"10.1007/s13762-023-05110-5","DOIUrl":null,"url":null,"abstract":"<div><p>The struggle to protect the atmosphere and the environment is increasing rapidly around the world. More work is needed to make energy production from renewable energy sources sustainable. The integration of energy with machine learning provides numerous advantages. In this study, the solar energy system, which is one of the main renewable energy sources, is considered. Support Vector Machine (SVM), K-nearest neighbor, Random Forest, Artificial Neural networks, Naive Bayes, Logistic Regression, Decision Tree, Gradient Boosting, Adaptive Boosting, and Stochastic Gradient Descent are used to forecast energy production. Forecast experiments are conducted in a region with high solar radiation and high temperature. Thus, there is an opportunity to examine overheated solar panels as well. A small-scale but adequate weather station is installed right next to the solar panel. Inputs such as temperature, pressure, humidity, and solar radiation obtained from the atmosphere with sensors are used. Obtained data are processed utilizing an Arduino microcontroller, data are recorded with C# software, and machine learning training is performed using Python programming. According to the results, the best performance is provided by SVM. This study provides guidance on whether solar energy systems investments are appropriate in the relevant region.</p></div>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"20 10","pages":"10999 - 11018"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13762-023-05110-5.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13762-023-05110-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
The struggle to protect the atmosphere and the environment is increasing rapidly around the world. More work is needed to make energy production from renewable energy sources sustainable. The integration of energy with machine learning provides numerous advantages. In this study, the solar energy system, which is one of the main renewable energy sources, is considered. Support Vector Machine (SVM), K-nearest neighbor, Random Forest, Artificial Neural networks, Naive Bayes, Logistic Regression, Decision Tree, Gradient Boosting, Adaptive Boosting, and Stochastic Gradient Descent are used to forecast energy production. Forecast experiments are conducted in a region with high solar radiation and high temperature. Thus, there is an opportunity to examine overheated solar panels as well. A small-scale but adequate weather station is installed right next to the solar panel. Inputs such as temperature, pressure, humidity, and solar radiation obtained from the atmosphere with sensors are used. Obtained data are processed utilizing an Arduino microcontroller, data are recorded with C# software, and machine learning training is performed using Python programming. According to the results, the best performance is provided by SVM. This study provides guidance on whether solar energy systems investments are appropriate in the relevant region.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.