Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis
Alan L. Stottlemyer , Thomas G. Kelly , Qinghe Meng , Jingguang G. Chen
{"title":"Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis","authors":"Alan L. Stottlemyer , Thomas G. Kelly , Qinghe Meng , Jingguang G. Chen","doi":"10.1016/j.surfrep.2012.07.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Historically the interest in the catalytic properties of transition metal carbides (TMC) has been inspired by their “Pt-like” properties in the transformation reactions of hydrocarbon molecules. Recent studies, however, have revealed that the reaction pathways of oxygen-containing molecules are significantly different between TMCs and Pt-group metals. Nonetheless, TMCs demonstrate intriguing catalytic properties toward oxygen-containing molecules, either as the catalyst or as the catalytically active substrate to support </span>metal catalysts<span>, in several important catalytic and electrocatalytic applications, including water electrolysis, alcohol electrooxidation, </span></span>biomass conversion<span>, and water gas shift reactions. In the current review we provide a summary of theoretical and experimental studies of the interaction of TMC surfaces with oxygen-containing molecules, including both inorganic (O</span></span><sub>2</sub>, H<sub>2</sub>O, CO and CO<sub>2</sub><span>) and organic (alcohols, aldehydes, acids and esters) molecules. We will discuss the general trends in the reaction pathways, as well as future research opportunities in surface science<span> studies that would facilitate the utilization of TMCs as catalysts and electrocatalysts.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2012-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2012.07.001","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572912000325","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 80
Abstract
Historically the interest in the catalytic properties of transition metal carbides (TMC) has been inspired by their “Pt-like” properties in the transformation reactions of hydrocarbon molecules. Recent studies, however, have revealed that the reaction pathways of oxygen-containing molecules are significantly different between TMCs and Pt-group metals. Nonetheless, TMCs demonstrate intriguing catalytic properties toward oxygen-containing molecules, either as the catalyst or as the catalytically active substrate to support metal catalysts, in several important catalytic and electrocatalytic applications, including water electrolysis, alcohol electrooxidation, biomass conversion, and water gas shift reactions. In the current review we provide a summary of theoretical and experimental studies of the interaction of TMC surfaces with oxygen-containing molecules, including both inorganic (O2, H2O, CO and CO2) and organic (alcohols, aldehydes, acids and esters) molecules. We will discuss the general trends in the reaction pathways, as well as future research opportunities in surface science studies that would facilitate the utilization of TMCs as catalysts and electrocatalysts.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.